RESUMO
High temperature stress has long-term negative effects on the growth and development of silkworm (Bombyx mori). Different silkworm varieties show the different tolerance to high temperature. The induction of autophagy is linked to increased thermotolerance in diverse ectothermic organisms. However, the function of autophagy in the thermotolerant and thermosensitive silkworm strains under high-temperature conditions remains unclear. The thermotolerant Liangguang NO.2 and thermosensitive Jingsong × Haoyue strains were used to explore the role of autophagy in thermotolerance. Here, we first found that the larval body weight gain was increased in the thermosensitive Jingsong × Haoyue strain, but there was no difference in the thermotolerant Liangguang NO.2 strain under high temperature conditions. High temperature stress had a negative influence on the cocoon performance in both the Liangguang NO.2 and Jingsong × Haoyue strains. Additionally, the autophagy-related gene Atg5 mRNA expression in the Liangguang NO.2 strain was upregulated by high temperature, while the expression of Atg12 mRNA was reduced in the Jingsong × Haoyue strain. Titers of 20-Hydroxyecdysone and the ultraspiracle 1 mRNA expression in the Liangguang NO.2 strain were upregulated by high temperature, which might be associated with the induction of autophagy. These results demonstrate the potentially regulatory mechanism of autophagy in silkworms' tolerance to high temperature, providing a theoretical basis for exploring the physiological mechanism of thermotolerance in insects.
Assuntos
Autofagia , Bombyx , Temperatura Alta , Larva , Termotolerância , Animais , Bombyx/crescimento & desenvolvimento , Bombyx/fisiologia , Bombyx/genética , Larva/crescimento & desenvolvimento , Trato Gastrointestinal/crescimento & desenvolvimento , Ecdisterona , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genéticaRESUMO
BACKGROUND: Cantharidin (CTD) is the active ingredient of Chinese medicine, which has been traditionally used in multiple cancers treatment, especially in hepatocellular carcinoma (HCC). However, a comprehensive analysis of the CTD-related molecular mechanism is still necessary to understand its functions in HCC treatment. This study aimed to reveal the novel molecular targets and regulatory networks of CTD in HCC. METHODS: A model of H22 tumour-bearing mice was constructed, and the function of CTD in tumour growth was evaluated. An integrated approach of CTD associated transcriptional profiling and biological systems analysis was used to identify key regulators involved in antitumour pathways. The identified differential expression patterns were supported by the results of Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyse, and by protein-protein interaction (PPI) network construction. The relationships between gene expression and tumour immunity were evaluated using Tumour Immune Estimation Resource (TIMER). Prognostic value was analyzed with Kaplan-Meier plotter. RESULTS: In the present study, the therapeutic effect of CTD on HCC was evaluated in vivo. We obtained the CTD-related transcriptional profiles, systematically and intuitively illustrated its possible pharmacological mechanisms in HCC through multiple targets and signalling pathways. These results revealed that the CTD-related differentially expressed genes were involved in autophagy, transcription factors (TFs) related transcriptional regulation, fatty acid metabolism and immune response in HCC. We found that MAPT, TOP2A, CENPF and MEFV were hub genes of CTD targets involved in autophagy regulation. Totally, 14 TFs have been confirmed to be critical for transcriptional regulation, and 33 TF targets were identified as the hub genes in transcriptional mis-regulation pathway in cancer. These TFs were associated with the immune response and immune cell infiltration. In addition, the downregulated genes were significantly enriched in metabolic regulation pathways, especially fatty acid metabolism after CTD treatment. Furthermore, the network of CTD associated miRNAs with these fatty acid metabolism-related targets was constructed in HCC. CONCLUSIONS: Taken together, our results comprehensively elucidated that CTD could act on multiple targets in HCC therapy, affecting autophagy, transcriptional regulation, the immune response and fatty acid metabolism. Our results provide a foundation for the study of the molecular mechanistic of CTD and its clinical application in the treatment of HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Cantaridina/farmacologia , Cantaridina/uso terapêutico , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Ácidos Graxos , Biologia Computacional/métodosRESUMO
A new electrochemical sensing material based on the MIL-101(Cr) molecular cage anchored on 2D Ti3C2TX-MXene nanosheets was prepared by using the in situ growth molecular engineering strategy. The sensing material was characterized by using different methods such as SEM, XRD, and XPS. The electrochemical sensing performance of MIL-101(Cr)/Ti3C2Tx-MXene was studied by DPV, CV, EIS, and other techniques. The electrochemical tests showed that the linear range of the modified electrode for xanthine (XA) detection was 1.5-73.0 µM and 73.0-133.0 µM, the detection limit was 0.45 µM (working potential of + 0.71 V vs. Ag/AgCl), and the performance is superior compared with the reported enzyme-free modified electrodes for detecting XA. The fabricated sensor has high selectivity and stability. It has good practicability in serum analysis with recoveries of 96.58-103.27% and a relative standard deviation (RSD) of 3.58-4.32%.
RESUMO
Chondrosarcoma (CHS) is the second most common bone malignant tumor and currently has limited treatment options. We have recently demonstrated that thioredoxin interacting protein (TXNIP) plays a crucial role in the oncogenesis of bone sarcoma, yet its implication in CHS is underdetermined. In the present study, we first found that knockdown of TXNIP promotes the proliferation of CHS cell largely through increasing their glycolytic metabolism, which is well-known as Warburg effect for providing energy. Consistent with our previous report that YAP is fundamental for CHS cell growth, herein we revealed that YAP functioned as an upstream molecule of TXNIP, and that YAP negatively regulated TXNIP mRNA and protein expression both in vitro and in vivo. Mechanistically, although knockdown of YAP upregulated both the nuclear and cytoplasmic TXNIP expression, we did not observe any obvious interaction between YAP and TXNIP; instead, miRNA-524-5p was demonstrated to be required for YAP-regulated TXNIP expression and thus controlling CHS cell growth. Together, our study reveals that TXNIP is a tumor suppressor in terms of CHS, and that the YAP/miRNA-524-5p/TXNIP signaling axis may provide a novel clue for CHS targeted therapy.
Assuntos
Proteínas de Transporte/genética , Condrossarcoma/genética , Condrossarcoma/patologia , MicroRNAs/metabolismo , Proteínas de Sinalização YAP/metabolismo , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Glicólise/genética , Humanos , MicroRNAs/genética , Mutação/genéticaRESUMO
A new highly oxygenated polyketide derivative, trichodersine (1), together with fourteen known compounds (2-15) were isolated from Trichoderma sp. MWTGP-04. The structure of trichodersine (1) was established based on comprehensive spectroscopic data analysis, and biogenesis argument. The results of double culture experiments indicated that the strain exhibited potential antifungal activity. The antifungal activities of all isolated compounds were evaluated, among them compound 1 exhibited remarkable antifungal activities against Fusarium solani, Plectosphaerella cucumerina, Alternaria panax, and Aspergillus niger, with minimum inhibitory concentrations (MICs) of 4, 4, 16, and 32â µg/mL, respectively. In addition, the antifungal experiments of polyketide derivatives (1-3) disclosed that their degree of oxidation was a key factor affecting the antifungal activity.
Assuntos
Policetídeos , Trichoderma , Antifúngicos/química , Trichoderma/química , Policetídeos/farmacologia , Aspergillus niger , Testes de Sensibilidade MicrobianaRESUMO
Protein arginine methyltransferase 5 (PRMT5) is a member of the arginine methyltransferase protein family that critically mediates the symmetric dimethylation of Arg-3 at histone H4 (H4R3me2s) and is involved in many key cellular processes, including hematopoiesis. However, the post-translational modifications (PTMs) of PRMT5 that may affect its biological functions remain less well-understood. In this study, using MS analyses, we found that PRMT5 itself is methylated in human erythroleukemia Lys-562 cells. Biochemical assays revealed that coactivator-associated arginine methyltransferase 1 (CARM1) interacts directly with and methylates PRMT5 at Arg-505 both in vivo and in vitro. Substitutions at Arg-505 significantly reduced PRMT5's methyltransferase activity, decreased H4R3me2s enrichment at the γ-globin gene promoter, and increased the expression of the γ-globin gene in Lys-562 cells. Moreover, CARM1 knockdown consistently reduced PRMT5 activity and activated γ-globin gene expression. Importantly, we show that CARM1-mediated methylation of PRMT5 is essential for the intracellular homodimerization of PRMT5 to its active form. These results thus reveal a critical PTM of PRMT5 that represses human γ-globin gene expression. We conclude that CARM1-mediated asymmetric methylation of PRMT5 is critical for its dimerization and methyltransferase activity leading to the repression of γ-globin expression. Given PRMT5's crucial role in diverse cellular processes, these findings may inform strategies for manipulating its methyltransferase activity for managing hemoglobinopathy or cancer.
Assuntos
Regulação Neoplásica da Expressão Gênica , Leucemia Eritroblástica Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , gama-Globinas/biossíntese , Linhagem Celular Tumoral , Metilação de DNA/genética , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/patologia , Proteínas de Neoplasias/genética , Proteína-Arginina N-Metiltransferases/genética , gama-Globinas/genéticaRESUMO
Type 2 diabetes mellitus (T2DM) is increasingly being recognized as an independent risk factor for the onset and progression of osteoarthritis (OA). Extensive studies have focused on the contribution of obesity (excessive mechanical stress), comorbidity frequently found in T2DM, to cartilage destruction during OA development. However, a little is known about how diabetes-related inflammation may affect the local cartilage in a diabetic objective. In the present study, we were able to establish a T2DM rat model using a combination of a low dose of streptozotocin with high-fat and high-sugar diet. Although the cartilage integrity was comparable between the control and T2DM groups, the expression of matrix metalloproteinases-13 (MMP-13) was significantly upregulated in T2DM, indicating the initiation of an early cascade of cartilage degeneration. In parallel, an obvious alteration of subchondral bone remodeling (inhibition of bone formation) was observed, as evidenced by the reduction of osterix-expressing positive cells. Moreover, we demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) in the serum and synovium of T2DM rats was elevated, accompanied by an increase of synovitis score. We also noticed that the number of F4/80-positive macrophage cells was significantly increased in the T2DM group. Mechanistically, the expression of ICAM-1 in fibroblast-like synoviocytes can be triggered by glucose and interleukin-1ß, which are the two important factors within the joint of T2DM. Given that MMP-13 expression was significantly upregulated in the T2DM cartilage, and that ICAM-1-mediated filtration of macrophage was associated with synovitis, we propose that ICAM-1 is essential for triggering a vicious cycle of inflammation within the joint, which together subsequently drivers the cartilage degradation.
Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Animais , Citocinas/metabolismo , Imuno-Histoquímica , Masculino , Osteoartrite/imunologia , Osteoartrite/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Microtomografia por Raio-XRESUMO
BACKGROUND: Shenzhen City is a rapidly growing area with a large number of floating populations, thus making it difficult to control HIV. Serial cross-sectional studies are helpful for the prediction of epidemiological tendency. In this study, two parallel cross-sectional studies were compared to explore changes in HIV epidemiology in Shenzhen, China. METHODS: Two hundred and fifty newly reported HIV-positive cases were randomly selected in Shenzhen City in 2013 and 2015. Socio-demographical information was collected with informed consent. Full-length gag and partial pol genes were amplified using nested RT-PCR followed by sequencing and phylogenetic analysis. The genotypes of anti-HIV drug resistance were also analyzed. The characteristics of the HIV epidemics of 2013 and 2015 were compared to identify patterns. RESULTS: The proportion of single, young MSMs dramatically increased in 2015 compared to 2013. Many subtypes, including CRF07_BC (36.4%), CRF01_AE (34.1%), CRF55_01B (10.2%), B (6.4%), CRF08_BC (3.4%), CRF59_01B (0.9%), C (0.7%), D (0.2%), CRF68_01B (0.2%), CRF67_01B (0.2%), and unique recombinant forms (URFs, 7.3%), were identified. Close phylogenetic relationships between strains prevalent in Shenzhen and other areas of China was observed. No epidemic cluster confined to single, young MSMs was identified. 0.4 and 2.8% of the strains contained transmitted drug-resistant mutations in 2013 and 2015, respectively. CONCLUSION: Although the interval period is short, changes in HIV epidemiology in Shenzhen City are distinct. Frequent surveillance of HIV epidemics in Shenzhen City is thus necessary. Single, young MSMs have become a high-risk population for HIV infection and should be considered as focus population for HIV prevention and behavior intervention in Shenzhen City.
Assuntos
Infecções por HIV/epidemiologia , HIV-1/genética , Minorias Sexuais e de Gênero/estatística & dados numéricos , Adolescente , Adulto , Idoso , China/epidemiologia , Estudos Transversais , Farmacorresistência Viral , Genes gag/genética , Genes pol/genética , Genótipo , HIV-1/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Reação em Cadeia da Polimerase , RNA Viral/genética , Fatores de Risco , Análise de Sequência de DNA , Adulto JovemRESUMO
Production of hemoglobin during development is tightly regulated. For example, expression from the human ß-globin gene locus, comprising ß-, δ-, ϵ-, and γ-globin genes, switches from ϵ-globin to γ-globin during embryonic development and then from γ-globin to ß-globin after birth. Expression of human ϵ-globin in mice has been shown to ameliorate anemia caused by ß-globin mutations, including those causing ß-thalassemia and sickle cell disease, raising the prospect that reactivation of ϵ-globin expression could be used in managing these conditions in humans. Although the human globin genes are known to be regulated by a variety of multiprotein complexes containing enzymes that catalyze epigenetic modifications, the exact mechanisms controlling ϵ-globin gene silencing remain elusive. Here we found that the heterochromatin protein HP1γ, a multifunctional chromatin- and DNA-binding protein with roles in transcriptional activation and elongation, represses ϵ-globin expression by interacting with a histone-modifying enzyme, lysine methyltransferase SUV4-20h2. Silencing of HP1γ expression markedly decreased repressive histone marks and the multimethylation of histone H3 lysine 9 and H4 lysine 20, leading to a significant decrease in DNA methylation at the proximal promoter of the ϵ-globin gene and greatly increased ϵ-globin expression. In addition, using chromatin immunoprecipitation, we showed that SUV4-20h2 facilitates the deposition of HP1γ on the ϵ-globin-proximal promoter. Thus, these data indicate that HP1γ is a novel epigenetic repressor of ϵ-globin gene expression and provide a potential strategy for targeted therapies for ß-thalassemia and sickle cell disease.
Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Repressão Epigenética , Globinas épsilon/genética , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Metilação de DNA , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Regiões Promotoras Genéticas , Ativação TranscricionalRESUMO
We demonstrate generation and detection of 120-Gbaud PAM-4 signals using an I/Q modulator based on optical band interleaving (OBI) technique. The spectral components of target PAM signals are split and pre-processed before being sent to two digital-to-analog convertors (sub-DACs) whose outputs are imprinted to an optical carrier by an optical I/Q modulator forming a carrier-suppressed tandem single side-band (SSB) signal. The PAM signals can be recovered after photo-detection provided that an optical beating tone is added at the edge of the signal spectrum along with the modulator output. The proposed method requires only half of the Nyquist bandwidth of the target PAM signal for the transmitter and has the advantage of a simple implementation. Using Kramers-Kronig (K-K) detection, a 120 Gbaud PAM-4 transmission over 80-km standard single mode fiber (SSMF) is successfully demonstrated. The proposed scheme entails a simple implementation and a much lower bandwidth requirement at the transmitter compared with conventional all-electronic high baud rate signal generation schemes.
RESUMO
The recently proposed b-modulation method for nonlinear Fourier transform-based fiber-optic transmission offers explicit control over the duration of the generated pulses and therewith solves a longstanding practical problem. The currently used b-modulation however suffers from a fundamental energy barrier. There is a limit to the energy of the pulses, in normalized units, that can be generated. In this paper, we discuss how the energy barrier can be shifted by proper design of the carrier waveform and the modulation alphabet. In an experiment, it is found that the improved b-modulator achieves both a higher Q-factor and a further reach than a comparable conventional b-modulator. Furthermore, it performs significantly better than conventional approaches that modulate the reflection coefficient.
RESUMO
Chondrosarcoma, the second-most frequent primary bone malignancy, is generally more resistant to conventional chemotherapy and radiotherapy. Therefore, the development of an effective adjuvant therapy is necessary. Recently, targeting the epigenetic regulator such as bromodomain and extraterminal domain (BET) proteins has achieved great success. For instance, the bromodomain inhibitor JQ1 has been shown to inhibit the growth of several cancer cells both in vitro and in vivo. Herein, we demonstrated that JQ1 significantly inhibited chondrosarcoma cell growth and colony formation. JQ1 also induced marked G1-phase cell cycle arrest coincided with the up-regulation of p21WAF1/CIP1 , p27Kip1 , and Cyclin D1 expression, and the down-regulation of Cyclin E2 expression. Moreover, JQ1 induced the premature senescence of SW 1353 cells, and that prolong treatment of JQ1 caused cell apoptosis. Mechanistically, the JQ1-induced cell growth inhibition was correlated with the suppression of c-Myc and Bcl-xL, which are the prime genes for cell cycle control and anti-apoptosis. Furthermore, we demonstrated that p21 negatively regulated the expression of c-Myc and Bcl-xL upon JQ1 treatment, and that the growth inhibition of SW 1353 and Hs 819.T cells and induction of p21 were predominantly regulated by the LATS1/YAP signaling but not through a p53-dependent manner. In conclusion, we disclosed a novel mechanism that JQ1 inhibits cell proliferation, induces cell senescence and apoptosis of chondrosarcoma cells through the regulation of the YAP/p21/c-Myc/Bcl-xL signaling axis. J. Cell. Biochem. 118: 2182-2192, 2017. © 2017 Wiley Periodicals, Inc.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Azepinas/farmacologia , Condrossarcoma/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fosfoproteínas/metabolismo , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Triazóis/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Immunoblotting , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição , Proteínas de Sinalização YAPRESUMO
Chondrosarcoma is the second most malignant bone tumor with poor prognosis and limited treatment options. Thus, development of more effective treatments has become urgent. Recently, natural compounds derived from medicinal plants have emerged as promising therapeutic options via targeting multiple key cellular molecules. Andrographolide (Andro) is such a compound, which has previously been shown to induce cell cycle arrest and apoptosis in several human cancers. However, the molecular mechanism through which Andro exerts its anti-cancer effect on chondrosarcoma remains to be elucidated. In the present study, we showed that Andro-induced G2/M cell cycle arrest of chondrosarcoma by fine-tuning the expressions of several cell cycle regulators such as p21, p27, and Cyclins, and that prolonged treatment of cells with Andro caused pronounced cell apoptosis. Remarkably, we found that SOX9 was highly expressed in poor-differentiated chondrosarcoma, and that knockdown of SOX9 suppressed chondrosarcoma cell growth. Further, our results showed that Andro dose-dependently down-regulated SOX9 expression in chondrosarcoma cells. Concomitantly, an inhibition of T cell factor 1 (TCF-1) mRNA expression and an enhancement of TCF-1 protein degradation by Andro were observed. In contrast, the expression and subcellular localization of ß-catenin were not altered upon the treatment of Andro, suggesting that ß-catenin might not function as the primary target of Andro. Additionally, we provided evidence that there was a mutual regulation between TCF-1 and SOX9 in chondrosarcoma cells. In conclusion, these results highlight the potential therapeutic effects of Andro in treatment of chondrosarcoma via targeting the TCF-1/SOX9 axis. J. Cell. Biochem. 118: 4575-4586, 2017. © 2017 Wiley Periodicals, Inc.
Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Condrossarcoma/tratamento farmacológico , Diterpenos/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Condrossarcoma/genética , Condrossarcoma/metabolismo , Condrossarcoma/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas de Neoplasias/genética , Fatores de Transcrição SOX9/genética , Fator 1 de Transcrição de Linfócitos T/genéticaRESUMO
In this paper, we experimentally investigate high-order modulation over a single discrete eigenvalue under the nonlinear Fourier transform (NFT) framework and exploit all degrees of freedom for encoding information. For a fixed eigenvalue, we compare different 4 bit/symbol modulation formats on the spectral amplitude and show that a 2-ring 16-APSK constellation achieves optimal performance. We then study joint spectral phase, spectral magnitude and eigenvalue modulation and found that while modulation on the real part of the eigenvalue induces pulse timing drift and leads to neighboring pulse interactions and nonlinear inter-symbol interference (ISI), it is more bandwidth efficient than modulation on the imaginary part of the eigenvalue in practical settings. We propose a spectral amplitude scaling method to mitigate such nonlinear ISI and demonstrate a record 4 GBaud 16-APSK on the spectral amplitude plus 2-bit eigenvalue modulation (total 6 bit/symbol at 24 Gb/s) transmission over 1000 km.
RESUMO
BACKGROUND: With increasing data on HIV-1, a more relevant molecular model describing mechanism details of HIV-1 genetic recombination usually requires upgrades. Currently an incomplete structural understanding of the copy choice mechanism along with several other issues in the field that lack elucidation led us to perform an analysis of the correlation between breakpoint distributions and (1) the probability of base pairing, and (2) intersubtype genetic similarity to further explore structural mechanisms. METHODS: Near full length sequences of URFs from Asia, Europe, and Africa (one sequence/patient), and representative sequences of worldwide CRFs were retrieved from the Los Alamos HIV database. Their recombination patterns were analyzed by jpHMM in detail. Then the relationships between breakpoint distributions and (1) the probability of base pairing, and (2) intersubtype genetic similarities were investigated. RESULTS: Pearson correlation test showed that all URF groups and the CRF group exhibit the same breakpoint distribution pattern. Additionally, the Wilcoxon two-sample test indicated a significant and inexplicable limitation of recombination in regions with high pairing probability. These regions have been found to be strongly conserved across distinct biological states (i.e., strong intersubtype similarity), and genetic similarity has been determined to be a very important factor promoting recombination. Thus, the results revealed an unexpected disagreement between intersubtype similarity and breakpoint distribution, which were further confirmed by genetic similarity analysis. Our analysis reveals a critical conflict between results from natural HIV-1 isolates and those from HIV-1-based assay vectors in which genetic similarity has been shown to be a very critical factor promoting recombination. CONCLUSIONS: These results indicate the region with high-pairing probabilities may be a more fundamental factor affecting HIV-1 recombination than sequence similarity in natural HIV-1 infections. Our findings will be relevant in furthering the understanding of HIV-1 recombination mechanisms.
RESUMO
Advanced modulation formats combined with digital signal processing and direct detection is a promising way to realize high capacity, low cost and power efficient short reach optical transmission system. In this paper, we present a detailed investigation on the performance of three advanced modulation formats for 100 Gb/s short reach transmission system. They are PAM-4, CAP-16 and DMT. The detailed digital signal processing required for each modulation format is presented. Comprehensive simulations are carried out to evaluate the performance of each modulation format in terms of received optical power, transmitter bandwidth, relative intensity noise and thermal noise. The performance of each modulation format is also experimentally studied. To the best of our knowledge, we report the first demonstration of a 112 Gb/s transmission over 10km of SSMF employing single band CAP-16 with EML. Finally, a comparison of computational complexity of DSP for the three formats is presented.
RESUMO
BACKGROUND: In this study, the prevalence of HIV-1 CRF01_AE intrasubtype recombinants in China is estimated and their contributions to the epidemic are explored. METHODS: Available HIV-1 complete genomes of CRF01_AE were retrieved from the HIV database. The two alignments were evaluated with RDP3. Recombinants were defined as cases in which the recombination signal was supported by at least 3 methods with P-values of ≤0.05 after Bonferroni correction for multiple comparisons implemented in RDP3. Phylogenetic analysis was performed to further investigate the role of intrasubtype recombinants in epidemics. RESULTS: Here, 124 out of the 339 sequences from around the world (36.6 %) showed significant evidence of recombination. Here, 84 of these recombinants were from China, accounting for 54.9 % of local total sequences (84 out of 153). The results indicated non-negligible levels of intrasubtype recombination. Subsequent phylogenetic analysis indicated that a considerable proportion of CRF01_AE strains in China originated from circulating intrasubtype recombinant forms. Three large, well-supported intrasubtype recombinants clusters were identified here. Through a survey of risk factors and sampling cities and provinces, cluster I and cluster II were found to be prevalent primarily among men who have sex with men in major northern cities. Cluster III was prevalent among heterosexuals and intravenous drug users in southern and southwestern provinces. CONCLUSIONS: The current work highlighted the remarkable prevalence of intrasubtype recombination within the CRF01_AE epidemic and emphasized the value of intrasubtype recombinants, which came to circulate in the same manner as intersubtype recombinants.
Assuntos
Infecções por HIV/virologia , HIV-1/genética , China/epidemiologia , Usuários de Drogas , Infecções por HIV/epidemiologia , HIV-1/patogenicidade , Heterossexualidade , Humanos , Masculino , Filogenia , Recombinação GenéticaRESUMO
BACKGROUND: The aim of this study was to investigate the role of K101Q, Y181C and H221Y emerging in HIV-1 reverse transcriptase with different mutations patterns in phenotypic susceptibility to currently available NNRTIs (nevirapine NVP, efavirenz EFV) and NRTIs (zidovudine AZT, lamivudine 3TC, stavudine d4T) in China. METHODS: Phenotype testing of currently available NNRTIs (NVP, EFV) and NRTIs (AZT, 3TC, d4T) was performed on TZM-b1 cells using recombined virus strains. P ≤ 0.05 was defined significant considering the change of 50% inhibitory drug concentration (IC50) compared with the reference, while P ≤ 0.01 was considered to be statistically significant considering multiple comparisons. RESULTS: Triple-mutation K101Q/Y181C/H221Y and double-mutation K101Q/Y181C resulted in significant increase in NVP resistance (1253.9-fold and 986.4-fold), while only K101Q/Y181C/H221Y brought a 5.00-fold significant increase in EFV resistance. Remarkably, K101Q/H221Y was hypersusceptible to EFV (FC = 0.04), but was significantly resistant to the three NRTIs. Then, the interaction analysis suggested the interaction was not significant to NVP (F = 0.77, P = 0.4061) but significant to EFV and other three NRTIs. CONCLUSION: Copresence of mutations reported to be associated with NNRTIs confers significant increase to NVP resistance. Interestingly, some may increase the susceptibility to EFV. Certainly, the double mutation (K101Q/H221Y) also changes the susceptibility of viruses to NRTIs. Interaction between two different sites makes resistance more complex.
Assuntos
Farmacorresistência Viral Múltipla/genética , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/genética , HIV-1/genética , Inibidores da Transcriptase Reversa/uso terapêutico , Alcinos , Benzoxazinas/uso terapêutico , China , Ciclopropanos , Humanos , Lamivudina/uso terapêutico , Mutação , Nevirapina/uso terapêutico , Fenótipo , Estavudina/uso terapêutico , Zidovudina/uso terapêuticoRESUMO
OBJECTIVE: To observe the clinical efficacy of Bushen Huoxue Sanyu Decoction (BHSD) in treatment of adenomyosis (AM) patients. METHODS: Seventy AM patients of Shen deficiency blood stasis syndrome (SDBSS) were randomly assigned to two groups, the CM treatment group (50 cases) and the Mirena group (20 cases). Patients in the CM treatment group were treated with BHSD, one dose per day. Levonorgestrel intrauterine system (Mirena) was placed in the uterine cavity of those in the Mirena group. The therapeutic course for all was 3 months. Changes of dysmenorrhea, menstrual quantity, SDBSS, CM syndrome, uterine volume, and serum CA125 levels were observed before and after treatment. RESULTS: Compared with before treatment in the same group, scores for dysmenorrhea integral, scores for menstrual quantity, scores for SDBSS, and scores for CM syndrome all decreased in the two groups after treatment (P < 0.01). Compared with before treatment in the same group, the uterine volume was reduced after treatment in the two groups (P < 0.05) and serum carbohydrate antigen CA125 levels decreased between the two groups (P < 0.05, P < 0.01). Compared with the Mirena group, scores for dysmenorrhea integral increased and scores for SDBSS decreased in the CM treatment group (P < 0.01, P < 0.05). There was no statistical difference in the uterine volume or serum carbohydrate antigen CA125 levels (P > 0.05). CONCLUSIONS: BHSD could effectively alleviate main symptoms of AM patients of QSBSS such as dysmenorrhea, profuse menstrual blood volume, and increased uterine volume, and lower scores for QSBSS and the total score for CM syndrome.
Assuntos
Adenomiose/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Dismenorreia , Feminino , Humanos , Levanogestrel/uso terapêuticoRESUMO
This work reports the rational design of a composite material by growing FeCu-MOF-919 on the surface of layered Ti3C2Tx MXene. The introduction of Ti3C2Tx MXene simultaneously weakens the aggregation of FeCu-MOF-919 and Ti3C2Tx MXene, which increases the electrochemical reaction active site of the composite material and improves the electrochemical activity. Interestingly, the FeCu-MOF-919/Ti3C2Tx based sensors were used to detect resorcinol (RS) with a wide linear range (0.5-152.5 µM), excellent sensitivity (0.23 µA µM-1 cm-2), low limit of detection (LOD = 0.08 µM) and outstanding stability. Meanwhile, the sensor shows high repeatability of 1.07 % RSD, reproducibility of 1.47 % RSD and anti-interference performance. What's more, the sensor can be successfully used to detect RS in tap water with good recoveries (96.25-103.37 %, RSD ≤2.18 %), demonstrating that the FeCu-MOF-919/Ti3C2Tx exhibits significant potential as an advanced sensing apparatus for the surveillance of RS in the natural environment.