Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Small ; 20(6): e2303494, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794621

RESUMO

Insufficient bone formation and excessive bone resorption caused by estrogen deficiency are the major factors resulting in the incidence of postmenopausal osteoporosis (PMOP). The existing drugs usually fail to re-establish the osteoblast/osteoclast balance from both sides and generate side-effects owing to the lack of bone-targeting ability. Here, engineered cell-membrane-coated nanogels PNG@mR&C capable of scavenging receptor activator of nuclear factor-κB ligand (RANKL) and responsively releasing therapeutic PTH 1-34 in the bone microenvironment are prepared from RANK and CXCR4 overexpressed bone mesenchymal stem cell (BMSC) membrane-coated chitosan biopolymers. The CXCR4 on the coated-membranes confer bone-targeting ability, and abundant RANK effectively absorb RANKL to inhibit osteoclastogenesis. Meanwhile, the release of PTH 1-34 triggered by osteoclast-mediated acid microenvironment promote osteogenesis. In addition, the dose and frequency are greatly reduced due to the smart release property, prolonged circulation time, and bone-specific accumulation. Thus, PNG@mR&C exhibits satisfactory therapeutic effects in the ovariectomized (OVX) mouse model. This study provides a new paradigm re-establishing the bone metabolic homeostasis from multitargets and shows great promise for the treatment of PMOP.


Assuntos
Osteoclastos , Osteoporose Pós-Menopausa , Humanos , Animais , Camundongos , Feminino , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/metabolismo , Nanogéis , Biomimética , Diferenciação Celular , Osteoblastos , Osteogênese , NF-kappa B/metabolismo
2.
Anal Chem ; 95(8): 3976-3985, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36633955

RESUMO

Lipids represent a large family of compounds with highly diverse structures that are involved in complex biological processes. A photocatalytic technique of on-tissue epoxidation of C=C double bonds has been developed for in situ mass spectrometric identification and spatial imaging of positional isomers of lipids. It is based on the plasmonic hot-electron transfer from irradiated gold nanowires to redox-active organic matrix compounds that undergo bond cleavages and generate hydroxyl radicals in nanoseconds. Intermediate radical anions and negative fragment ions have been unambiguously identified. Under the irradiation of a pulsed laser of the third harmonic of Nd3+:YAG (355 nm), the hydroxyl radical-driven epoxidation of unsaturated lipids with different numbers of C=C bonds can be completed in nanoseconds with high yields of up to 95%. Locations of C=C bonds were recognized with diagnostic fragment ions that were produced by either collision with an inert gas or auto-fragmentation resulting from the impact of energetic hot electrons and vibrational excitation. This technique has been applied to the analysis of breast cancer tissues of mice models without extensive sample processes. It was experimentally demonstrated that C=C bonds may be formed at different positions of not only regular mono- or poly-unsaturated fatty acids but also other odd-numbered long-chain fatty acids.


Assuntos
Ácidos Graxos , Radical Hidroxila , Camundongos , Animais , Espectrometria de Massas , Isomerismo , Ácidos Graxos Insaturados/análise
3.
BMC Cancer ; 23(1): 851, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697245

RESUMO

BACKGROUND: A number of human diseases have been associated with Centromere protein N (CENPN), but its role in breast cancer is unclear. METHODS: A pan-cancer database of Genotype Tissue Expression (GTEx) and the Cancer Genome Atlas (TCGA) were used to examine the expression of CENPN. Using TCGA clinical survival data and breast cancer specimens from our center for validation, the relationship between CENPN expression, breast cancer prognosis, and clinicopathological characteristics of patients was examined. Bioinformatics was utilized to conduct an enrichment study of CENPN. Additionally, the potential of CENPN as a predictive biomarker for immunotherapy success was confirmed by analyzing the co-expression of CENPN with immune-checkpoint related genes, reviewing the TCGA database, and evaluating the correlation between CENPN expression and immune cell infiltration. Using the CCK8 test and colony formation assay, CENPN was evaluated for its ability to inhibit breast cancer cell proliferation. Transwell assays and scratch tests were used to assess the impact of CENPN on breast cancer cell migration. RESULTS: CENPN is found in a wide range of tumors, including breast cancer. Additional investigation revealed that CENPN was co-expressed with the majority of immune checkpoint-related genes, had the potential to serve as a predictive biomarker for immunotherapy effectiveness, and that high CENPN expression was linked to high Tregs and low CD8 + T cells and NK cells. Breast cancer cells' malignant characteristics, such as migration and cell proliferation, were inhibited by CENPN knockdown. CONCLUSIONS: According to our findings, CENPN may be an oncogene in breast cancer, as well as a new therapeutic target for immune checkpoint inhibitors.


Assuntos
Neoplasias da Mama , Proteínas Cromossômicas não Histona , Feminino , Humanos , Neoplasias da Mama/genética , Proliferação de Células/genética , Biologia Computacional , Oncogenes
4.
Jpn J Clin Oncol ; 51(7): 1051-1058, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33893504

RESUMO

BACKGROUND: Papillary thyroid cancer cells can express oestrogen receptor alpha, which is encoded by the ESR1 gene and may bind to oestrogen to induce the occurrence and development of papillary thyroid cancer. The BRAFV600E mutation is also an important biomarker for the occurrence and progression of papillary thyroid cancer. However, the association between the BRAFV600E mutation and oestrogen receptor alpha expression has not been identified. This study aims to investigate the association between ESR1 expression and the BRAFV600E mutation and its clinical significance. METHODS: Oestrogen receptor alpha and BRAFV600E proteins were detected by immunohistochemical staining of formalin-fixed paraffin-embedded thyroid tissues from 1105 patients with papillary thyroid cancer at our institution. Messenger RNA expression counts of ESR1 and clinicopathologic information were obtained from The Cancer Genome Atlas database. RESULTS: Oestrogen receptor alpha protein expression was significantly associated with BRAFV600E protein. The positive rate of oestrogen receptor alpha protein in papillary thyroid cancer patients was significantly higher in males, younger patients and patients with the multifocal type. In papillary thyroid cancer patients with positive BRAFV600E protein, oestrogen receptor alpha expression was significantly correlated with central lymph node metastasis. Data from the The Cancer Genome Atlas database also suggested that the ESR1 messenger RNA level was associated with the BRAFV600E mutation. Furthermore, classification analysis performed according to a tree-based classification method demonstrated that higher ESR1 messenger RNA expression indicated poorer overall survival in papillary thyroid cancer patients with the BRAFV600E mutation. CONCLUSIONS: The percentage of BRAFV600E mutations is increased in patients with higher ESR1 messenger RNA levels, and the BRAFV600E protein might be co-expressed with oestrogen receptor alpha, which could be an indicator of cervical lymph node metastasis and poor overall survival in patients with papillary thyroid cancer.


Assuntos
Receptor alfa de Estrogênio , Proteínas Proto-Oncogênicas B-raf , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo
5.
Front Oncol ; 14: 1399484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868535

RESUMO

Background: With a rise in recent years, thyroid cancer (TC) is the most prevalent hormonal cancer worldwide. It is essential to investigate the inherent variability at the molecular level and the immune environment within tumors of various thyroid cancer subtypes in order to identify potential targets for therapy and provide precise treatment for patients with thyroid adenocarcinoma. Methods: First, we analyzed the expression of IRX5 in pan-cancer and papillary thyroid carcinoma by bioinformatics methods and collected paired samples from our center for validation. Subsequently, we analyzed the significance of IRX5 on the prognosis and diagnosis of PTC. Next, we explored the possible mechanisms by which IRX5 affects the prognosis of thyroid cancer patients by GO/KEGG enrichment analysis, and further investigated the effect of IRX5 on immune infiltration of thyroid cancer. Ultimately, by conducting experiments on cells and animals, we were able to show how IRX5 impacts the aggressive characteristics of thyroid cancer cells and its influence on macrophages within the immune system of thyroid cancer. Results: In 11 malignant tumors, including PTC, IRX5 is overexpressed and associated with a poor prognosis. IRX5 may affect the prognosis of PTC through embryonic organ development, ossification, mesenchyme development, etc. Increased IRX5 expression decreases the presence of cytotoxic and Th17 cells in papillary thyroid cancer. IRX5 was highly expressed in different PTC cell lines, such as K-1 and TPC-1. Silencing IRX5 effectively halted the growth and movement of PTC cells while also decreasing M2 polarization and enhancing M1 polarization in tumor-associated macrophages. Conclusion: IRX5 could impact the outlook of individuals with PTC by stimulating the shift of macrophages to M2 in the immune surroundings of thyroid cancer growths, suggesting a potential new focus for treating thyroid cancer, particularly through immunotherapy.

6.
Int J Gen Med ; 17: 1451-1466, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645401

RESUMO

Purpose: B-cell lymphoma 9 (BCL9), a key transcription co-activator of the Wnt pathway, contributed to tumor progression and metastasis in various tumors, whereas, the role of BCL9 in papillary thyroid cancer (PTC) has not been investigated. Methods: We acquired PTC gene expression data from The Cancer Genome Atlas (TCGA) database. Fifty-nine PTC tissues were applied to validate the clinical significance of BCL9. Cell experiments were applied to investigate the role of BCL9. Bioinformatics analysis was employed to investigate the biological functions of BCL9. Results: We found that BCL9 was higher expressed (P < 0.05) and an independent risk factor for lymph node metastasis (OR = 3.770, P = 0.025), as well as associated with poorer progression-free survival (PFS) (P = 0.049) in PTC. BCL9 knockdown inhibited proliferation and invasion of PTC cells. BCL9 was positively associated with the key genes of Wnt/ß-catenin and MAPK pathway by co-expression analysis. GO, KEGG and GSEA analysis showed BCL9 might participated in PPAR, cAMP, and focal adhesion pathway. CIBERSORT analysis found BCL9 was negatively associated with CD8+ T cells and NK cell infiltration and positively with PD-L1 expression. Conclusion: Therefore, BCL9 was associated with lymph node metastasis and shorter PFS of PTC, due to promotion of PTC cell proliferation and invasion, activation of Wnt/ß-catenin and MAPK pathway, inhibition of CD8+ T and NK cell infiltration, and promotion of PD-L1 expression.

7.
Cancer Gene Ther ; 31(2): 217-227, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37990061

RESUMO

TNFRSF19 is a member of the tumor necrosis factor receptor superfamily, and its function exhibits variability among different types of cancers. The influence of TNFRSF19 on triple-negative breast cancer (TNBC) has yet to be definitively established. In this study, bioinformatics analyses revealed that lower TNFRSF19 was associated with the poorer prognosis, higher lymph node metastasis and lower immune infiltration. Subsequently, data obtained from the TCGA database and collection of tissue samples revealed that the mRNA and protein expression levels of TNFRSF19 were observed to be significantly reduced in TNBC tissue compared to normal tissue. Additionally, the results of in vitro experiments have demonstrated that TNFRSF19 possessed the ability to inhibit the proliferation, migration and invasive capabilities of TNBC cells. In vivo trials elucidated that TNFRSF19 could suppress tumor xenografts growth. Mechanistically, TNFRSF19 initiated caspase-independent cell death and induced paraptosis. Moreover, rescue assays demonstrated that TNFRSF19 induced-paraptosis was facilitated by MAPK pathway-mediated endoplasmic reticulum (ER) stress. In conclusion, our findings demonstrated that the upregulation of TNFRSF19 functioned as a tumor suppressor in TNBC by stimulating paraptosis through the activation of the MAPK pathway-mediated ER stress, highlighting its potential to be a new therapeutic target for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Paraptose , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Receptores do Fator de Necrose Tumoral/metabolismo , Proliferação de Células/genética
8.
Front Oncol ; 13: 1207867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637061

RESUMO

Background: There has been an increase in the number of women suffering from breast cancer in recent years, and discovering new therapeutic targets and efficacy predictive markers is critical for comprehensive breast cancer treatment. Methods: First, we used bioinformatics methods to analyze TARS1(encoding cytoplasmicthreonyl-tRNA synthetase) expression, prognosis, and clinicopathological characteristics in TCGA database breast cancers, and then we collected breast cancer specimens from our center for validation. TARS1 was then subjected to GSEA (Gene Set Enrichment Analysis) enrichment analysis, GO/KEGG pathway enrichment analysis, and breast cancer immune infiltration characterization. As a last step, we examined TARS1's effects on breast cancer cell behavior with cellular assays. Results: The overexpression of TARS1 has been found in several malignant tumors, including breast cancer, and has been linked to poor prognoses. Breast cancers with large primary tumors and negative hormone receptors are more likely to overexpress TARS1. Overexpression of TARS1 promotes the infiltration of T cells, such as Tregs and Th2s, while inhibiting the infiltration of NK cells and CD8+ T cells, which are anticancer cells in breast cancer. TARS1 was also found to be co-expressed with the majority of immune checkpoint-related genes, and breast cancer with TARS1 overexpression responded better to immunotherapy. By knocking down TARS1, breast cancer cells were prevented from proliferating and invading, as well as exhibiting other malignant biological properties. Conclusion: According to our study, TARS1 may be an oncogene in breast cancer and may be a biomarker of efficacy or a target of immunotherapy in breast cancer.

9.
Front Oncol ; 13: 1046774, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816951

RESUMO

Background: Centromere protein L (CENPL) is associated with a variety of human diseases. However, its function in breast cancer remains uncertain. Methods: The Cancer Genome Atlas (TCGA) and genotype-tissue expression across cancer data were used to investigate CENPL expression. Using TCGA clinical survival data, the relationship between CENPL expression and patient prognosis was assessed. Using the cluster profiler R software tool, enrichment analysis of CENPL was carried out. Additionally, by studying the TCGA database, the relationship between CENPL expression and immune cell infiltration was assessed. To evaluate CENPL's impact on breast cancer cell proliferation, the CCK8 test and colony-formation assay were carried out. Scratch testing and the transwell assay were used to evaluate the effects of CENPL on breast cancer cell migration. Results: Breast cancer was one of numerous tumor forms with high CENPL expression. Significant relationships between high CENPL expression and the cell cycle, nuclear division, organelle fission, and chromosome segregation were found. Further investigation revealed that minimal infiltration of CD8-positive T cells and natural killer (NK) cells and high levels of Tregs and macrophages were correlated with high levels of CENPL expression. CENPL expression was linked to more than half of the ICP genes. Breast cancer cells' ability to proliferate and migrate was decreased by CENPL knockdown. Conclusions: Our findings suggest that CENPL may be an oncogene in breast cancer and a predictor of efficacy of immunotherapy for breast cancer.

10.
NPJ Breast Cancer ; 9(1): 93, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957150

RESUMO

Microcalcification (MC) is a valuable diagnostic indicator of breast cancer, and it is reported to be associated with increased tumor aggressiveness and poor prognosis. Nevertheless, the exact potential molecular mechanism is not completely understood. Here, we find that the mineralized invasive breast cancer (IBC) cells not only increased their proliferation and migration, but also showed the characteristic of doxorubicin resistance. The PI3K/AKT signaling pathway is associated with the generation of calcification in IBC, and it activates the transcription and translation of its downstream hypoxia-inducible factor 1α (HIF1α). Knockdown of HIF1α protein significantly downregulated cell proliferation and migration while calcification persists. Meanwhile, calcified breast cancer cells restored sensitivity to doxorubicin because of suppressed HIF1α expression. In addition, we provide initial data on the underlying value of HIF1α as a biomarker of doxorubicin resistance. These findings provide a new direction for exploring microcalcifications in IBC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA