Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de estudo
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(4): e17248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581126

RESUMO

Both human populations and marine biodiversity are concentrated along coastlines, with growing conservation interest in how these ecosystems can survive intense anthropogenic impacts. Tropical urban centres provide valuable research opportunities because these megacities are often adjacent to mega-diverse coral reef systems. The Pearl River Delta is a prime exemplar, as it encompasses one of the most densely populated and impacted regions in the world and is located just northwest of the Coral Triangle. However, the spatial and taxonomic complexity of this biodiversity, most of which is small, cryptic in habitat and poorly known, make comparative analyses challenging. We deployed standardized settlement structures at seven sites differing in the intensity of human impacts and used COI metabarcoding to characterize benthic biodiversity, with a focus on metazoans. We found a total of 7184 OTUs, with an average of 665 OTUs per sampling unit; these numbers exceed those observed in many previous studies using comparable methods, despite the location of our study in an urbanized environment. Beta diversity was also high, with 52% of the OTUs found at just one site. As expected, we found that the sites close to point sources of pollution had substantially lower diversity (44% less) relative to sites bathed in less polluted oceanic waters. However, the polluted sites contributed substantially to the total animal diversity of the region, with 25% of all OTUs occurring only within polluted sites. Further analysis of Arthropoda, Annelida and Mollusca showed that phylogenetic clustering within a site was common, suggesting that environmental filtering reduced biodiversity to a subset of lineages present within the region, a pattern that was most pronounced in polluted sites and for the Arthropoda. The water quality gradients surrounding the PRD highlight the unique role of in situ studies for understanding the impacts of complex urbanization pressures on biodiversity.


Assuntos
Antozoários , Ecossistema , Animais , Humanos , Filogenia , Biodiversidade , Recifes de Corais
3.
Microbiome ; 8(1): 57, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317019

RESUMO

BACKGROUND: Giant clams and scleractinian (reef-building) corals are keystone species of coral reef ecosystems. The basis of their ecological success is a complex and fine-tuned symbiotic relationship with microbes. While the effect of environmental change on the composition of the coral microbiome has been heavily studied, we know very little about the composition and sensitivity of the microbiome associated with clams. Here, we explore the influence of increasing temperature on the microbial community (bacteria and dinoflagellates from the family Symbiodiniaceae) harbored by giant clams, maintained either in isolation or exposed to other reef species. We created artificial benthic assemblages using two coral species (Pocillopora damicornis and Acropora cytherea) and one giant clam species (Tridacna maxima) and studied the microbial community in the latter using metagenomics. RESULTS: Our results led to three major conclusions. First, the health status of giant clams depended on the composition of the benthic species assemblages. Second, we discovered distinct microbiotypes in the studied T. maxima population, one of which was disproportionately dominated by Vibrionaceae and directly linked to clam mortality. Third, neither the increase in water temperature nor the composition of the benthic assemblage had a significant effect on the composition of the Symbiodiniaceae and bacterial communities of T. maxima. CONCLUSIONS: Altogether, our results suggest that at least three microbiotypes naturally exist in the studied clam populations, regardless of water temperature. These microbiotypes plausibly provide similar functions to the clam host via alternate molecular pathways as well as microbiotype-specific functions. This redundancy in functions among microbiotypes together with their specificities provides hope that giant clam populations can tolerate some levels of environmental variation such as increased temperature. Importantly, the composition of the benthic assemblage could make clams susceptible to infections by Vibrionaceae, especially when water temperature increases. Video abstract.


Assuntos
Antozoários , Bivalves , Recifes de Corais , Código de Barras de DNA Taxonômico , Microbiota , Animais , Antozoários/microbiologia , Antozoários/fisiologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bivalves/microbiologia , Bivalves/fisiologia , Dinoflagellida/classificação , Dinoflagellida/crescimento & desenvolvimento , Simbiose , Temperatura
4.
Sci Rep ; 10(1): 9922, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555283

RESUMO

Dimethylsulfoniopropionate (DMSP) is a key compound in the marine sulfur cycle, and is produced in large quantities in coral reefs. In addition to Symbiodiniaceae, corals and associated bacteria have recently been shown to play a role in DMSP metabolism. Numerous ecological studies have focused on DMSP concentrations in corals, which led to the hypothesis that increases in DMSP levels might be a general response to stress. Here we used multiple species assemblages of three common Indo-Pacific holobionts, the scleractinian corals Pocillopora damicornis and Acropora cytherea, and the giant clam Tridacna maxima and examined the DMSP concentrations associated with each species within different assemblages and thermal conditions. Results showed that the concentration of DMSP in A. cytherea and T. maxima is modulated according to the complexity of species assemblages. To determine the potential importance of symbiotic dinoflagellates in DMSP production, we then explored the relative abundance of Symbiodiniaceae clades in relation to DMSP levels using metabarcoding, and found no significant correlation between these factors. Finally, this study also revealed the existence of homologs involved in DMSP production in giant clams, suggesting for the first time that, like corals, they may also contribute to DMSP production. Taken together, our results demonstrated that corals and giant clams play important roles in the sulfur cycle. Because DMSP production varies in response to specific species-environment interactions, this study offers new perspectives for future global sulfur cycling research.


Assuntos
Antozoários/metabolismo , Bivalves/metabolismo , Recifes de Corais , Compostos de Sulfônio/metabolismo , Enxofre/metabolismo , Simbiose , Animais
5.
Sci Rep ; 9(1): 2675, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804382

RESUMO

To prevent the settlement and/or the growth of fouling organisms (i.e. bacteria, fungi or microalgae), benthic sessile species have developed various defense mechanisms among which the production of chemical molecules. While studies have mostly focused on the release of chemical compounds by single species, there exist limited data on multi-species assemblages. We used an integrative approach to explore the potential interactive effects of distinct assemblages of two corals species and one giant clam species on biofouling appearance and composition. Remarkably, we found distinct biofouling communities suggesting the importance of benthic sessile assemblages in biofouling control. Moreover, the assemblage of 3 species led to an inhibition of biofouling, likely through a complex of secondary metabolites. Our results highlight that through their different effect on their near environment, species assemblages might be of upmost importance for their survival and therefore, should now be taken into account for sustainable management of coral reefs.


Assuntos
Antozoários/fisiologia , Incrustação Biológica/prevenção & controle , Bivalves/fisiologia , Recifes de Corais , Animais , Antozoários/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bivalves/metabolismo , Conservação dos Recursos Naturais/métodos , Ecossistema , Fungos/classificação , Fungos/crescimento & desenvolvimento , Microalgas/classificação , Microalgas/crescimento & desenvolvimento
6.
Chemosphere ; 195: 190-200, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29268177

RESUMO

Marine ecosystems are both stressed and threatened by pesticides that are used on land. Nevertheless, research on the impact of pesticides on coral reefs and the underlying mechanisms is still in its infancy. The insecticide chlordecone is a persistent organic pollutant with carcinogenic effects in rats and mice. Chlordecone has been detected in diverse marine organisms in the Caribbean, but unexpectedly, also in French Polynesia. We combined transcriptomic and morphologic analyses of analyses the response of the coral Pocillopora damicornis to chlordecone stress. We compared chlordecone stress with thermal stress to determine a chlordecone-specific response. We found eight transcripts related to the P450-1A or P450-3A families that were specifically overexpressed in response to chlordecone. There was also sequential overexpression of transcripts involved in apoptosis and degradation of cellular matrix proteins. Finally, we report the first observation of chlordecone-induced P. damicornis polyp bail-out. Altogether, these results strongly suggest that apoptosis and expression of genes belonging to the cathepsin family are sequentially regulated processes leading to coenosarc dissociation and loss.


Assuntos
Antozoários/efeitos dos fármacos , Clordecona/toxicidade , Animais , Apoptose/efeitos dos fármacos , Região do Caribe , Catepsinas/genética , Clordecona/farmacologia , Exposição Ambiental/efeitos adversos , Inseticidas/farmacologia , Inseticidas/toxicidade , Praguicidas/farmacologia , Ratos , Ativação Transcricional/efeitos dos fármacos , Índias Ocidentais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA