Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821050

RESUMO

Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.

3.
Nat Methods ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918605

RESUMO

Contemporary pose estimation methods enable precise measurements of behavior via supervised deep learning with hand-labeled video frames. Although effective in many cases, the supervised approach requires extensive labeling and often produces outputs that are unreliable for downstream analyses. Here, we introduce 'Lightning Pose', an efficient pose estimation package with three algorithmic contributions. First, in addition to training on a few labeled video frames, we use many unlabeled videos and penalize the network whenever its predictions violate motion continuity, multiple-view geometry and posture plausibility (semi-supervised learning). Second, we introduce a network architecture that resolves occlusions by predicting pose on any given frame using surrounding unlabeled frames. Third, we refine the pose predictions post hoc by combining ensembling and Kalman smoothing. Together, these components render pose trajectories more accurate and scientifically usable. We released a cloud application that allows users to label data, train networks and process new videos directly from the browser.

4.
Hum Mol Genet ; 32(17): 2717-2734, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37369025

RESUMO

Inherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria, present unique challenges to energetic homeostasis by disrupting energy-producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut)-type methylmalonic aciduria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared with littermate controls, along with a relative reduction in lean mass but increase in fat mass. Brown adipose tissue showed a process of whitening, in line with lower body surface temperature and lesser ability to cope with cold challenge. Mutant mice had dysregulated plasma glucose, delayed glucose clearance and a lesser ability to regulate energy sources when switching from the fed to fasted state, while liver investigations indicated metabolite accumulation and altered expression of peroxisome proliferator-activated receptor and Fgf21-controlled pathways. Together, these shed light on the mechanisms and adaptations behind energy imbalance in methylmalonic aciduria and provide insight into metabolic responses to chronic energy shortage, which may have important implications for disease understanding and patient management.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Camundongos , Animais , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Metabolismo Energético/genética , Fígado/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046029

RESUMO

Cells are continuously exposed to potentially dangerous compounds. Progressive accumulation of damage is suspected to contribute to neurodegenerative diseases and aging, but the molecular identity of the damage remains largely unknown. Here we report that PARK7, an enzyme mutated in hereditary Parkinson's disease, prevents damage of proteins and metabolites caused by a metabolite of glycolysis. We found that the glycolytic metabolite 1,3-bisphosphoglycerate (1,3-BPG) spontaneously forms a novel reactive intermediate that avidly reacts with amino groups. PARK7 acts by destroying this intermediate, thereby preventing the formation of proteins and metabolites with glycerate and phosphoglycerate modifications on amino groups. As a consequence, inactivation of PARK7 (or its orthologs) in human cell lines, mouse brain, and Drosophila melanogaster leads to the accumulation of these damaged compounds, most of which have not been described before. Our work demonstrates that PARK7 function represents a highly conserved strategy to prevent damage in cells that metabolize carbohydrates. This represents a fundamental link between metabolism and a type of cellular damage that might contribute to the development of Parkinson's disease.


Assuntos
Glucose/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Animais , Biomarcadores , Metabolismo dos Carboidratos , Cromatografia Líquida , Drosophila melanogaster , Técnicas de Silenciamento de Genes , Ácidos Glicéricos/metabolismo , Glicólise , Humanos , Espectrometria de Massas , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Camundongos , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteína Desglicase DJ-1/química
6.
Trends Biochem Sci ; 45(3): 228-243, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31473074

RESUMO

Hundreds of metabolic enzymes work together smoothly in a cell. These enzymes are highly specific. Nevertheless, under physiological conditions, many perform side-reactions at low rates, producing potentially toxic side-products. An increasing number of metabolite repair enzymes are being discovered that serve to eliminate these noncanonical metabolites. Some of these enzymes are extraordinarily conserved, and their deficiency can lead to diseases in humans or embryonic lethality in mice, indicating their central role in cellular metabolism. We discuss how metabolite repair enzymes eliminate glycolytic side-products and prevent negative interference within and beyond this core metabolic pathway. Extrapolating from the number of metabolite repair enzymes involved in glycolysis, hundreds more likely remain to be discovered that protect a wide range of metabolic pathways.


Assuntos
Enzimas/metabolismo , Animais , Glicólise , Humanos , Camundongos
7.
J Biol Chem ; 299(9): 105095, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507022

RESUMO

Many transcripts are targeted by nonsense-mediated decay (NMD), leading to their degradation and the inhibition of their translation. We found that the protein SUZ domain-containing protein 1 (SZRD1) interacts with the key NMD factor up-frameshift 1. When recruited to NMD-sensitive reporter gene transcripts, SZRD1 increased protein production, at least in part, by relieving translational inhibition. The conserved SUZ domain in SZRD1 was required for this effect. The SUZ domain is present in only three other human proteins besides SZRD1: R3H domain-containing protein 1 and 2 (R3HDM1, R3HDM2) and cAMP-regulated phosphoprotein 21 (ARPP21). We found that ARPP21, similarly to SZRD1, can increase protein production from NMD-sensitive reporter transcripts in an SUZ domain-dependent manner. This indicated that the SUZ domain-containing proteins could prevent translational inhibition of transcripts targeted by NMD. Consistent with the idea that SZRD1 mainly prevents translational inhibition, we did not observe a systematic decrease in the abundance of NMD targets when we knocked down SZRD1. Surprisingly, knockdown of SZRD1 in two different cell lines led to reduced levels of the NMD component UPF3B, which was accompanied by increased levels in a subset of NMD targets. This suggests that SZRD1 is required to maintain normal UPF3B levels and indicates that the effect of SZRD1 on NMD targets is not limited to a relief from translational inhibition. Overall, our study reveals that human SUZ domain-containing proteins play a complex role in regulating protein output from transcripts targeted by NMD.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Proteínas de Ligação a RNA , Humanos , Linhagem Celular , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Domínios Proteicos , Células HeLa , Células HEK293
8.
Am J Hum Genet ; 108(6): 1151-1160, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33979636

RESUMO

We describe a genetic syndrome due to PGM2L1 deficiency. PGM2 and PGM2L1 make hexose-bisphosphates, like glucose-1,6-bisphosphate, which are indispensable cofactors for sugar phosphomutases. These enzymes form the hexose-1-phosphates crucial for NDP-sugars synthesis and ensuing glycosylation reactions. While PGM2 has a wide tissue distribution, PGM2L1 is highly expressed in the brain, accounting for the elevated concentrations of glucose-1,6-bisphosphate found there. Four individuals (three females and one male aged between 2 and 7.5 years) with bi-allelic inactivating mutations of PGM2L1 were identified by exome sequencing. All four had severe developmental and speech delay, dysmorphic facial features, ear anomalies, high arched palate, strabismus, hypotonia, and keratosis pilaris. Early obesity and seizures were present in three individuals. Analysis of the children's fibroblasts showed that glucose-1,6-bisphosphate and other sugar bisphosphates were markedly reduced but still present at concentrations able to stimulate phosphomutases maximally. Hence, the concentrations of NDP-sugars and glycosylation of the heavily glycosylated protein LAMP2 were normal. Consistent with this, serum transferrin was normally glycosylated in affected individuals. PGM2L1 deficiency does not appear to be a glycosylation defect, but the clinical features observed in this neurodevelopmental disorder point toward an important but still unknown role of glucose-1,6-bisphosphate or other sugar bisphosphates in brain metabolism.


Assuntos
Glucose-6-Fosfato/análogos & derivados , Mutação , Transtornos do Neurodesenvolvimento/patologia , Fosfotransferases/genética , Alelos , Criança , Pré-Escolar , Feminino , Glucose-6-Fosfato/biossíntese , Glicosilação , Humanos , Masculino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Linhagem
9.
Biochem J ; 479(12): 1317-1336, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35670459

RESUMO

Pharmacological AMPK activation represents an attractive approach for the treatment of type 2 diabetes (T2D). AMPK activation increases skeletal muscle glucose uptake, but there is controversy as to whether AMPK activation also inhibits hepatic glucose production (HGP) and pharmacological AMPK activators can have off-target effects that contribute to their anti-diabetic properties. The main aim was to investigate the effects of 991 and other direct AMPK activators on HGP and determine whether the observed effects were AMPK-dependent. In incubated hepatocytes, 991 substantially decreased gluconeogenesis from lactate, pyruvate and glycerol, but not from other substrates. Hepatocytes from AMPKß1-/- mice had substantially reduced liver AMPK activity, yet the inhibition of glucose production by 991 persisted. Also, the glucose-lowering effect of 991 was still seen in AMPKß1-/- mice subjected to an intraperitoneal pyruvate tolerance test. The AMPK-independent mechanism by which 991 treatment decreased gluconeogenesis could be explained by inhibition of mitochondrial pyruvate uptake and inhibition of mitochondrial sn-glycerol-3-phosphate dehydrogenase-2. However, 991 and new-generation direct small-molecule AMPK activators antagonized glucagon-induced gluconeogenesis in an AMPK-dependent manner. Our studies support the notion that direct pharmacological activation of hepatic AMPK as well as inhibition of pyruvate uptake could be an option for the treatment of T2D-linked hyperglycemia.


Assuntos
Diabetes Mellitus Tipo 2 , Glucagon , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucagon/metabolismo , Gluconeogênese , Glucose/metabolismo , Ácido Láctico/metabolismo , Fígado/metabolismo , Camundongos , Ácido Pirúvico/metabolismo
10.
J Biol Chem ; 296: 100789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34015330

RESUMO

The glycoprotein α-dystroglycan helps to link the intracellular cytoskeleton to the extracellular matrix. A unique glycan structure attached to this protein is required for its interaction with extracellular matrix proteins such as laminin. Up to now, this is the only mammalian glycan known to contain ribitol phosphate groups. Enzymes in the Golgi apparatus use CDP-ribitol to incorporate ribitol phosphate into the glycan chain of α-dystroglycan. Since CDP-ribitol is synthesized in the cytoplasm, we hypothesized that an unknown transporter must be required for its import into the Golgi apparatus. We discovered that CDP-ribitol transport relies on the CMP-sialic acid transporter SLC35A1 and the transporter SLC35A4 in a redundant manner. These two transporters are closely related, but bulky residues in the predicted binding pocket of SLC35A4 limit its size. We hypothesized that the large binding pocket SLC35A1 might accommodate the bulky CMP-sialic acid and the smaller CDP-ribitol, whereas SLC35A4 might only accept CDP-ribitol. To test this, we expressed SLC35A1 with mutations in its binding pocket in SLC35A1 KO cell lines. When we restricted the binding site of SLC35A1 by introducing the bulky residues present in SLC35A4, the mutant transporter was unable to support sialylation of proteins in cells but still supported ribitol phosphorylation. This demonstrates that the size of the binding pocket determines the substrate specificity of SLC35A1, allowing a variety of cytosine nucleotide conjugates to be transported. The redundancy with SLC35A4 also explains why patients with SLC35A1 mutations do not show symptoms of α-dystroglycan deficiency.


Assuntos
Complexo de Golgi/metabolismo , Açúcares de Nucleosídeo Difosfato/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Sítios de Ligação , Transporte Biológico , Distroglicanas/metabolismo , Glicosilação , Células HEK293 , Humanos , Modelos Moleculares , Proteínas de Transporte de Nucleotídeos/química
11.
J Biol Chem ; 297(4): 101083, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34419447

RESUMO

The cytosolic enzyme ethylmalonyl-CoA decarboxylase (ECHDC1) decarboxylates ethyl- or methyl-malonyl-CoA, two side products of acetyl-CoA carboxylase. These CoA derivatives can be used to synthesize a subset of branched-chain fatty acids (FAs). We previously found that ECHDC1 limits the synthesis of these abnormal FAs in cell lines, but its effects in vivo are unknown. To further evaluate the effects of ECHDC1 deficiency, we generated knockout mice. These mice were viable, fertile, showed normal postnatal growth, and lacked obvious macroscopic and histologic changes. Surprisingly, tissues from wild-type mice already contained methyl-branched FAs due to methylmalonyl-CoA incorporation, but these FAs were only increased in the intraorbital glands of ECHDC1 knockout mice. In contrast, ECHDC1 knockout mice accumulated 16-20-carbon FAs carrying ethyl-branches in all tissues, which were undetectable in wild-type mice. Ethyl-branched FAs were incorporated into different lipids, including acylcarnitines, phosphatidylcholines, plasmanylcholines, and triglycerides. Interestingly, we found a variety of unusual glycine-conjugates in the urine of knockout mice, which included adducts of ethyl-branched compounds in different stages of oxidation. This suggests that the excretion of potentially toxic intermediates of branched-chain FA metabolism might prevent a more dramatic phenotype in these mice. Curiously, ECHDC1 knockout mice also accumulated 2,2-dimethylmalonyl-CoA. This indicates that the broad specificity of ECHDC1 might help eliminate a variety of potentially dangerous branched-chain dicarboxylyl-CoAs. We conclude that ECHDC1 prevents the formation of ethyl-branched FAs and that urinary excretion of glycine-conjugates allows mice to eliminate potentially deleterious intermediates of branched-chain FA metabolism.


Assuntos
Acil Coenzima A/metabolismo , Carboxiliases/deficiência , Ácidos Graxos/metabolismo , Acil Coenzima A/genética , Animais , Carboxiliases/metabolismo , Ácidos Graxos/genética , Camundongos , Camundongos Knockout
12.
J Biol Chem ; 296: 100699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33895133

RESUMO

N-acetylneuraminate (Neu5Ac), an abundant sugar present in glycans in vertebrates and some bacteria, can be used as an energy source by several prokaryotes, including Escherichia coli. In solution, more than 99% of Neu5Ac is in cyclic form (≈92% beta-anomer and ≈7% alpha-anomer), whereas <0.5% is in the open form. The aldolase that initiates Neu5Ac metabolism in E. coli, NanA, has been reported to act on the alpha-anomer. Surprisingly, when we performed this reaction at pH 6 to minimize spontaneous anomerization, we found NanA and its human homolog NPL preferentially metabolize the open form of this substrate. We tested whether the E. coli Neu5Ac anomerase NanM could promote turnover, finding it stimulated the utilization of both beta and alpha-anomers by NanA in vitro. However, NanM is localized in the periplasmic space and cannot facilitate Neu5Ac metabolism by NanA in the cytoplasm in vivo. We discovered that YhcH, a cytoplasmic protein encoded by many Neu5Ac catabolic operons and belonging to a protein family of unknown function (DUF386), also facilitated Neu5Ac utilization by NanA and NPL and displayed Neu5Ac anomerase activity in vitro. YhcH contains Zn, and its accelerating effect on the aldolase reaction was inhibited by metal chelators. Remarkably, several transition metals accelerated Neu5Ac anomerization in the absence of enzyme. Experiments with E. coli mutants indicated that YhcH expression provides a selective advantage for growth on Neu5Ac. In conclusion, YhcH plays the unprecedented role of providing an aldolase with the preferred unstable open form of its substrate.


Assuntos
Frutose-Bifosfato Aldolase/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Escherichia coli/enzimologia , Frutose-Bifosfato Aldolase/química , Modelos Moleculares , Ácido N-Acetilneuramínico/química , Periplasma/metabolismo , Conformação Proteica , Transporte Proteico , Estereoisomerismo
13.
Proc Natl Acad Sci U S A ; 116(4): 1241-1250, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30626647

RESUMO

Neutropenia represents an important problem in patients with genetic deficiency in either the glucose-6-phosphate transporter of the endoplasmic reticulum (G6PT/SLC37A4) or G6PC3, an endoplasmic reticulum phosphatase homologous to glucose-6-phosphatase. While affected granulocytes show reduced glucose utilization, the underlying mechanism is unknown and causal therapies are lacking. Using a combination of enzymological, cell-culture, and in vivo approaches, we demonstrate that G6PT and G6PC3 collaborate to destroy 1,5-anhydroglucitol-6-phosphate (1,5AG6P), a close structural analog of glucose-6-phosphate and an inhibitor of low-KM hexokinases, which catalyze the first step in glycolysis in most tissues. We show that 1,5AG6P is made by phosphorylation of 1,5-anhydroglucitol, a compound normally present in human plasma, by side activities of ADP-glucokinase and low-KM hexokinases. Granulocytes from patients deficient in G6PC3 or G6PT accumulate 1,5AG6P to concentrations (∼3 mM) that strongly inhibit hexokinase activity. In a model of G6PC3-deficient mouse neutrophils, physiological concentrations of 1,5-anhydroglucitol caused massive accumulation of 1,5AG6P, a decrease in glucose utilization, and cell death. Treating G6PC3-deficient mice with an inhibitor of the kidney glucose transporter SGLT2 to lower their blood level of 1,5-anhydroglucitol restored a normal neutrophil count, while administration of 1,5-anhydroglucitol had the opposite effect. In conclusion, we show that the neutropenia in patients with G6PC3 or G6PT mutations is a metabolite-repair deficiency, caused by a failure to eliminate the nonclassical metabolite 1,5AG6P.


Assuntos
Antiporters/metabolismo , Glucose-6-Fosfatase/metabolismo , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Neutropenia/metabolismo , Fosforilação/fisiologia , Animais , Morte Celular/fisiologia , Linhagem Celular , Retículo Endoplasmático/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Ratos Wistar
14.
Dev Dyn ; 250(11): 1634-1650, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33840153

RESUMO

BACKGROUND: miR-33 family members are well characterized regulators of cellular lipid levels in mammals. Previous studies have shown that overexpression of miR-33 in Drosophila melanogaster leads to elevated triacylglycerol (TAG) levels in certain contexts. Although loss of miR-33 in flies causes subtle defects in larval and adult ovaries, the effects of miR-33 deficiency on lipid metabolism and other phenotypes impacted by metabolic state have not yet been characterized. RESULTS: We found that loss of miR-33 predisposes flies to elevated TAG levels, and we identified genes involved in TAG synthesis as direct targets of miR-33, including atpcl, midway, and Akt1. miR-33 mutants survived longer upon starvation but showed greater sensitivity to an oxidative stressor. We also found evidence that miR-33 is a negative regulator of cuticle pigmentation and that miR-33 mutants show a reduction in interfollicular stalk cells during oogenesis. CONCLUSION: Our data suggest that miR-33 is a conserved regulator of lipid homeostasis, and its targets are involved in both degradation and synthesis of fatty acids and TAG. The constellation of phenotypes involving tissues that are highly sensitive to metabolic state suggests that miR-33 serves to prevent extreme fluctuations in metabolically sensitive tissues.


Assuntos
Proteínas de Drosophila , MicroRNAs , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metabolismo dos Lipídeos/genética , Mamíferos/genética , Mamíferos/metabolismo , MicroRNAs/genética , Triglicerídeos/metabolismo
15.
J Inherit Metab Dis ; 43(1): 14-24, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31691304

RESUMO

It is traditionally assumed that enzymes of intermediary metabolism are extremely specific and that this is sufficient to prevent the production of useless and/or toxic side-products. Recent work indicates that this statement is not entirely correct. In reality, enzymes are not strictly specific, they often display weak side activities on intracellular metabolites (substrate promiscuity) that resemble their physiological substrate or slowly catalyse abnormal reactions on their physiological substrate (catalytic promiscuity). They thereby produce non-classical metabolites that are not efficiently metabolised by conventional enzymes. In an increasing number of cases, metabolite repair enzymes are being discovered that serve to eliminate these non-classical metabolites and prevent their accumulation. Metabolite repair enzymes also eliminate non-classical metabolites that are formed through spontaneous (ie, not enzyme-catalysed) reactions. Importantly, genetic deficiencies in several metabolite repair enzymes lead to 'inborn errors of metabolite repair', such as L-2-hydroxyglutaric aciduria, D-2-hydroxyglutaric aciduria, 'ubiquitous glucose-6-phosphatase' (G6PC3) deficiency, the neutropenia present in Glycogen Storage Disease type Ib or defects in the enzymes that repair the hydrated forms of NADH or NADPH. Metabolite repair defects may be difficult to identify as such, because the mutated enzymes are non-classical enzymes that act on non-classical metabolites, which in some cases accumulate only inside the cells, and at rather low, yet toxic, concentrations. It is therefore likely that many additional metabolite repair enzymes remain to be discovered and that many diseases of metabolite repair still await elucidation.


Assuntos
Enzimas/metabolismo , Enzimas/fisiologia , Redes e Vias Metabólicas/fisiologia , Erros Inatos do Metabolismo/prevenção & controle , Metabolismo/fisiologia , Encefalopatias Metabólicas Congênitas/metabolismo , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Neutropenia/metabolismo
16.
Biochem J ; 476(4): 629-643, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30670572

RESUMO

Repair of a certain type of oxidative DNA damage leads to the release of phosphoglycolate, which is an inhibitor of triose phosphate isomerase and is predicted to indirectly inhibit phosphoglycerate mutase activity. Thus, we hypothesized that phosphoglycolate might play a role in a metabolic DNA damage response. Here, we determined how phosphoglycolate is formed in cells, elucidated its effects on cellular metabolism and tested whether DNA damage repair might release sufficient phosphoglycolate to provoke metabolic effects. Phosphoglycolate concentrations were below 5 µM in wild-type U2OS and HCT116 cells and remained unchanged when we inactivated phosphoglycolate phosphatase (PGP), the enzyme that is believed to dephosphorylate phosphoglycolate. Treatment of PGP knockout cell lines with glycolate caused an up to 500-fold increase in phosphoglycolate concentrations, which resulted largely from a side activity of pyruvate kinase. This increase was much higher than in glycolate-treated wild-type cells and was accompanied by metabolite changes consistent with an inhibition of phosphoglycerate mutase, most likely due to the removal of the priming phosphorylation of this enzyme. Surprisingly, we found that phosphoglycolate also inhibits succinate dehydrogenase with a Ki value of <10 µM. Thus, phosphoglycolate can lead to profound metabolic disturbances. In contrast, phosphoglycolate concentrations were not significantly changed when we treated PGP knockout cells with Bleomycin or ionizing radiation, which are known to lead to the release of phosphoglycolate by causing DNA damage. Thus, phosphoglycolate concentrations due to DNA damage are too low to cause major metabolic changes in HCT116 and U2OS cells.


Assuntos
DNA de Neoplasias , Glicolatos , Proteínas de Neoplasias , Neoplasias , Monoéster Fosfórico Hidrolases , Succinato Desidrogenase , Dano ao DNA , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Glicolatos/metabolismo , Glicolatos/farmacologia , Células HCT116 , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
17.
Biochem J ; 476(20): 3033-3052, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31657440

RESUMO

6-NADH and 6-NADPH are strong inhibitors of several dehydrogenases that may form spontaneously from NAD(P)H. They are known to be oxidized to NAD(P)+ by mammalian renalase, an FAD-linked enzyme mainly present in heart and kidney, and by related bacterial enzymes. We partially purified an enzyme oxidizing 6-NADPH from rat liver, and, surprisingly, identified it as pyridoxamine-phosphate oxidase (PNPO). This was confirmed by the finding that recombinant mouse PNPO oxidized 6-NADH and 6-NADPH with catalytic efficiencies comparable to those observed with pyridoxine- and pyridoxamine-5'-phosphate. PNPOs from Escherichia coli, Saccharomyces cerevisiae and Arabidopsis thaliana also displayed 6-NAD(P)H oxidase activity, indicating that this 'side-activity' is conserved. Remarkably, 'pyridoxamine-phosphate oxidase-related proteins' (PNPO-RP) from Nostoc punctiforme, A. thaliana and the yeast S. cerevisiae (Ygr017w) were not detectably active on pyridox(am)ine-5'-P, but oxidized 6-NADH, 6-NADPH and 2-NADH suggesting that this may be their main catalytic function. Their specificity profiles were therefore similar to that of renalase. Inactivation of renalase and of PNPO in mammalian cells and of Ygr017w in yeasts led to the accumulation of a reduced form of 6-NADH, tentatively identified as 4,5,6-NADH3, which can also be produced in vitro by reduction of 6-NADH by glyceraldehyde-3-phosphate dehydrogenase or glucose-6-phosphate dehydrogenase. As 4,5,6-NADH3 is not a substrate for renalase, PNPO or PNPO-RP, its accumulation presumably reflects the block in the oxidation of 6-NADH. These findings indicate that two different classes of enzymes using either FAD (renalase) or FMN (PNPOs and PNPO-RPs) as a cofactor play an as yet unsuspected role in removing damaged forms of NAD(P).


Assuntos
Biocatálise , NADPH Oxidases/metabolismo , NAD/metabolismo , Piridoxaminafosfato Oxidase/metabolismo , Animais , Arabidopsis/enzimologia , Domínio Catalítico , Escherichia coli/enzimologia , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Fígado/enzimologia , Camundongos , Monoaminoxidase/química , Monoaminoxidase/metabolismo , NADPH Oxidases/isolamento & purificação , Nostoc/enzimologia , Oxirredução , Piridoxaminafosfato Oxidase/química , Ratos , Saccharomyces cerevisiae/enzimologia , Transfecção
18.
Biochem J ; 476(16): 2427-2447, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31416829

RESUMO

Most fatty acids (FAs) are straight chains and are synthesized by fatty acid synthase (FASN) using acetyl-CoA and malonyl-CoA units. Yet, FASN is known to be promiscuous as it may use methylmalonyl-CoA instead of malonyl-CoA and thereby introduce methyl-branches. We have recently found that the cytosolic enzyme ECHDC1 degrades ethylmalonyl-CoA and methylmalonyl-CoA, which presumably result from promiscuous reactions catalyzed by acetyl-CoA carboxylase on butyryl- and propionyl-CoA. Here, we tested the hypothesis that ECHDC1 is a metabolite repair enzyme that serves to prevent the formation of methyl- or ethyl-branched FAs by FASN. Using the purified enzyme, we found that FASN can incorporate not only methylmalonyl-CoA but also ethylmalonyl-CoA, producing methyl- or ethyl-branched FAs. Using a combination of gas-chromatography and liquid chromatography coupled to mass spectrometry, we observed that inactivation of ECHDC1 in adipocytes led to an increase in several methyl-branched FAs (present in different lipid classes), while its overexpression reduced them below wild-type levels. In contrast, the formation of ethyl-branched FAs was observed almost exclusively in ECHDC1 knockout cells, indicating that ECHDC1 and the low activity of FASN toward ethylmalonyl-CoA efficiently prevent their formation. We conclude that ECHDC1 performs a typical metabolite repair function by destroying methyl- and ethylmalonyl-CoA. This reduces the formation of methyl-branched FAs and prevents the formation of ethyl-branched FAs by FASN. The identification of ECHDC1 as a key modulator of the abundance of methyl-branched FAs opens the way to investigate their function.


Assuntos
Acil Coenzima A/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Ácidos Graxos/biossíntese , Células 3T3-L1 , Acil Coenzima A/genética , Animais , Descarboxilação , Ácido Graxo Sintase Tipo I/genética , Ácidos Graxos/genética , Camundongos
19.
Proc Natl Acad Sci U S A ; 114(16): E3233-E3242, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373563

RESUMO

The mammalian gene Nit1 (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently α-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly active toward deaminated glutathione (dGSH; i.e., a form of glutathione in which the free amino group has been replaced by a carbonyl group). We further show that Nit1-KO mutants of both human and yeast cells accumulate dGSH and the same compound is excreted in large amounts in the urine of Nit1-KO mice. Finally, we show that several mammalian aminotransferases (transaminases), both cytosolic and mitochondrial, can form dGSH via a common (if slow) side-reaction and provide indirect evidence that transaminases are mainly responsible for dGSH formation in cultured mammalian cells. Altogether, these findings delineate a typical instance of metabolite repair, whereby the promiscuous activity of some abundant enzymes of primary metabolism leads to the formation of a useless and potentially harmful compound, which needs a suitable "repair enzyme" to be destroyed or reconverted into a useful metabolite. The need for a dGSH repair reaction does not appear to be limited to eukaryotes: We demonstrate that Nit1 homologs acting as excellent dGSH amidases also occur in Escherichia coli and other glutathione-producing bacteria.


Assuntos
Aminoidrolases/metabolismo , Glutationa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transaminases/metabolismo , Aminoidrolases/fisiologia , Animais , Desaminação , Humanos , Hidrólise , Camundongos , Camundongos Knockout , Especificidade por Substrato
20.
J Neurosci ; 37(36): 8783-8796, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28821672

RESUMO

The sensory neocortex is a highly connected associative network that integrates information from multiple senses, even at the level of the primary sensory areas. Although a growing body of empirical evidence supports this view, the neural mechanisms of cross-modal integration in primary sensory areas, such as the primary visual cortex (V1), are still largely unknown. Using two-photon calcium imaging in awake mice, we show that the encoding of audiovisual stimuli in V1 neuronal populations is highly dependent on the features of the stimulus constituents. When the visual and auditory stimulus features were modulated at the same rate (i.e., temporally congruent), neurons responded with either an enhancement or suppression compared with unisensory visual stimuli, and their prevalence was balanced. Temporally incongruent tones or white-noise bursts included in audiovisual stimulus pairs resulted in predominant response suppression across the neuronal population. Visual contrast did not influence multisensory processing when the audiovisual stimulus pairs were congruent; however, when white-noise bursts were used, neurons generally showed response suppression when the visual stimulus contrast was high whereas this effect was absent when the visual contrast was low. Furthermore, a small fraction of V1 neurons, predominantly those located near the lateral border of V1, responded to sound alone. These results show that V1 is involved in the encoding of cross-modal interactions in a more versatile way than previously thought.SIGNIFICANCE STATEMENT The neural substrate of cross-modal integration is not limited to specialized cortical association areas but extends to primary sensory areas. Using two-photon imaging of large groups of neurons, we show that multisensory modulation of V1 populations is strongly determined by the individual and shared features of cross-modal stimulus constituents, such as contrast, frequency, congruency, and temporal structure. Congruent audiovisual stimulation resulted in a balanced pattern of response enhancement and suppression compared with unisensory visual stimuli, whereas incongruent or dissimilar stimuli at full contrast gave rise to a population dominated by response-suppressing neurons. Our results indicate that V1 dynamically integrates nonvisual sources of information while still attributing most of its resources to coding visual information.


Assuntos
Estimulação Acústica , Percepção Auditiva/fisiologia , Rede Nervosa/fisiologia , Estimulação Luminosa , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Sinais (Psicologia) , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mascaramento Perceptivo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA