Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Fish Dis ; 42(12): 1687-1696, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31617230

RESUMO

Bacterial antibiotic resistance is one of the main healthcare problems currently. Apart from reducing antibiotic efficacy, it has awakened the interest of scientists due to its association with bacterial fitness and virulence. Interestingly, antibiotic resistance can be a source of both increased fitness and decreased fitness, even though the molecular basis of these relationships remains unknown. The aim of this work is to define the effects of sub-MIC concentrations of cefotaxime, an antibiotic extensively used in clinical practice, on the physiology and virulence of Yersinia ruckeri and to determine the importance of these sub-MIC concentrations for the selection of antibiotic-resistant mutants in the aquatic environment. Results indicated that exposure to sub-MIC concentrations of cefotaxime selected Y. ruckeri populations with irreversible alterations in the physiology, such as slow growth, aggregation in liquid cultures and modification of the colony morphology. These bacteria also displayed changes in the OMPs and LPS profiles and a full attenuation of virulence. An overexpression of the envelope stress regulator RpoE was also detected after exposure to the antibiotic. In conclusion, exposure to cefotaxime selected, at high frequency, Y. ruckeri strains that survive the antibiotic stress at the expense of a fitness cost and the loss of virulence.


Assuntos
Antibacterianos/farmacologia , Cefotaxima/farmacologia , Farmacorresistência Bacteriana/genética , Virulência , Yersinia ruckeri/efeitos dos fármacos , Yersinia ruckeri/genética , Animais , Proteínas de Bactérias/genética , Doenças dos Peixes/microbiologia , Teste de Complementação Genética , Aptidão Genética , Testes de Sensibilidade Microbiana , Oncorhynchus mykiss/microbiologia , Porinas/genética , Seleção Genética , Yersiniose/microbiologia , Yersiniose/veterinária , Yersinia ruckeri/patogenicidade
2.
Vet Res ; 46: 1, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25582708

RESUMO

Flavobacterium psychrophilum is an important fish pathogen, responsible for Cold Water Disease, with a significant economic impact on salmonid farms worldwide. In spite of this, little is known about the bacterial physiology and pathogenesis mechanisms, maybe because it is difficult to manipulate, being considered a fastidious microorganism. Mutants obtained using a Tn4351 transposon were screened in order to identify those with alteration in colony morphology, colony spreading and extracellular proteolytic activity, amongst other phenotypes. A F. psychrophilum mutant lacking gliding motility showed interruption of the FP1638 locus that encodes a putative type-2 glycosyltransferase (from here on referred to as fpgA gene, Flavobacterium psychrophilum glycosyltransferase). Additionally, the mutant also showed a decrease in the extracellular proteolytic activity as a consequence of down regulation in the fpgA mutant background of the fpp2-fpp1 operon promoter, responsible for the major extracellular proteolytic activity of the bacterium. The protein glycosylation profile of the parental strain showed the presence of a 22 kDa glycosylated protein which is lost in the mutant. Complementation with the fpgA gene led to the recovery of the wild-type phenotype. LD50 experiments in the rainbow trout infection model show that the mutant was highly attenuated. The pleiotropic phenotype of the mutant demonstrated the importance of this glycosyltranferase in the physiology and virulence of the bacterium. Moreover, the fpgA mutant strain could be considered a good candidate for the design of an attenuated vaccine.


Assuntos
Proteínas de Bactérias/genética , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/enzimologia , Flavobacterium/patogenicidade , Glicosiltransferases/genética , Oncorhynchus mykiss , Animais , Proteínas de Bactérias/metabolismo , Doenças dos Peixes/enzimologia , Infecções por Flavobacteriaceae/enzimologia , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/genética , Glicosiltransferases/metabolismo , Dose Letal Mediana , Virulência
3.
BMC Microbiol ; 14: 221, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25266819

RESUMO

BACKGROUND: The heat sensitive factor (HSF) of the fish pathogen Yersinia ruckeri was previously identified as an unusual band on SDS-PAGE. According to this, Y. ruckeri strains were classified in HSF+ and HSF - in terms of the presence/absence of the factor. Experiments carried out by injection challenge with HSF + strains caused high mortalities in rainbow trout. In contrast, HSF - strains did not cause mortality. In conclusion, HSF appeared to be a relevant virulence factor in Y. ruckeri. RESULTS: We report here the identification and study of the gene coding for the enzyme involved in the production of HSF. Culture medium containing SDS and Coomassie brilliant blue dye was used to screen a mini-Tn5 Km2 mutant library of Y. ruckeri 150. Blue colonies lacking a surrounding creamy deposit, a phenotype described in former studies as HSF - , were identified. DNA sequence analysis of a selected mutant revealed that this had a transposon interruption in a chromosome-located gene which codes for a heat sensitive alkyl sulphatase of 78.7 kDa (YraS; Yersinia ruckeri alkyl sulphatase) which is able to degrade SDS to 1-dodecanol. As it was expected, the introduction of the yraS gene into an HSF - strain turned this into HSF + . Surprisingly, although the protein allows Y. ruckeri to degrade SDS, the bacterium could not use this compound as the sole carbon source. Moreover, the yraS mutant showed a similar level of SDS resistance to the parental strain. It was the interruption of the acrA gene which made Y. ruckeri sensitive to this compound. LD50 experiments showed a similar virulence of the yraS mutant and parental strain. CONCLUSIONS: The HSF of Y. ruckeri is the product of the alkyl sulphatase YraS, able to degrade SDS to 1-dodecanol. This degradation is not linked to the utilization of SDS as a carbon source and surprisingly, the enzyme is not involved in bacterial virulence or in the high SDS resistance displayed by the bacterium. This role is played by the AcrAB-TolC system.


Assuntos
Adesinas Bacterianas/metabolismo , Dodecilsulfato de Sódio/metabolismo , Sulfatases/metabolismo , Fatores de Virulência/metabolismo , Yersinia ruckeri/enzimologia , Yersinia ruckeri/metabolismo , Animais , Carbono/metabolismo , Elementos de DNA Transponíveis , DNA Bacteriano/química , DNA Bacteriano/genética , Dodecanol/metabolismo , Doenças dos Peixes/microbiologia , Doenças dos Peixes/patologia , Dose Letal Mediana , Dados de Sequência Molecular , Mutagênese Insercional , Oncorhynchus mykiss , Análise de Sequência de DNA , Virulência , Yersiniose/microbiologia , Yersiniose/patologia , Yersiniose/veterinária , Yersinia ruckeri/crescimento & desenvolvimento
4.
J Bacteriol ; 194(18): 5118-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22933752

RESUMO

This work describes the draft genome sequence of Lactococcus garvieae IPLA 31405, isolated from a traditional Spanish cheese. The genome contains a lactose-galactose operon, a bacteriocin locus, two integrated phages, a transposon harboring an active tet(M) gene, and two theta-type plasmid replicons. Genes encoding virulence factors were not recorded.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Lactococcus/genética , Análise de Sequência de DNA , Bacteriocinas/metabolismo , Queijo/microbiologia , Elementos de DNA Transponíveis , Lactococcus/efeitos dos fármacos , Lactococcus/isolamento & purificação , Lactococcus/metabolismo , Dados de Sequência Molecular , Óperon , Plasmídeos , Prófagos/genética , Resistência a Tetraciclina
5.
Sci Total Environ ; 838(Pt 1): 156023, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35595142

RESUMO

Great attention has been paid to the long-term decline in terrestrial near-surface wind speed (SWS) in China. However, how the SWS varies with regions and seasons and what modulates these changes remain unclear. Based on quality-controlled and homogenized terrestrial SWS data from 596 stations, the covarying SWS patterns during the Asian Summer Monsoon (ASM) and the Asian Winter Monsoon (AWM) seasons are defined for China using empirical orthogonal function (EOF) analysis for 1961-2016. The dominant SWS features represented by EOF1 patterns in both seasons show a clear decline over most regions of China. The interannual variability of the EOF1 patterns is closely related to the Northeast Asia Low Pressure (NEALP) and the Arctic Oscillation (AO), respectively. The EOF2 and EOF3 patterns during ASM (AWM) season describe a dipole mode of SWS between East Tibetan Plateau and East China Plain (between East Tibetan Plateau and Northeast China), and between Southeast and Northeast China (between Northeast China and the coastal areas of Southeast China), respectively. These dipole structures of SWS changes are closely linked with the oceanic-atmospheric oscillations on interannual scale.


Assuntos
Monitoramento Ambiental , Vento , China , Oceanos e Mares , Estações do Ano
6.
J Bacteriol ; 193(14): 3684-5, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21602331

RESUMO

Lactococcus garvieae is the etiological agent of lactococcosis disease, affecting many cultured fish species worldwide. In addition, this bacterium is currently considered a potential zoonotic microorganism since it is known to cause several opportunistic human infections. Here we present the draft genome sequence of the L. garvieae strain UNIUD074.


Assuntos
Doenças dos Peixes/microbiologia , Genoma Bacteriano , Lactococcus/isolamento & purificação , Infecções Estreptocócicas/veterinária , Animais , Sequência de Bases , Surtos de Doenças , Doenças dos Peixes/epidemiologia , Itália/epidemiologia , Lactococcus/classificação , Lactococcus/genética , Dados de Sequência Molecular , Oncorhynchus mykiss/microbiologia , Infecções Estreptocócicas/microbiologia
7.
J Bacteriol ; 193(4): 944-51, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21169490

RESUMO

Application of in vivo expression technology (IVET) to Yersinia ruckeri, an important fish pathogen, allowed the identification of two adjacent genes that represent a novel bacterial system involved in the uptake and degradation of l-cysteine. Analysis of the translational products of both genes showed permease domains (open reading frame 1 [ORF1]) and amino acid position identities (ORF2) with the l-cysteine desulfidase from Methanocaldococcus jannaschii, a new type of enzyme involved in the breakdown of l-cysteine. The operon was named cdsAB (cysteine desulfidase) and is found widely in anaerobic and facultative bacteria. cdsAB promoter analysis using lacZY gene fusion showed highest induction in the presence of l-cysteine. Two cdsA and cdsB mutant strains were generated. The limited toxic effect and the low utilization of l-cysteine observed in the cdsA mutant, together with radiolabeled experiments, strongly suggested that CdsA is an l-cysteine permease. Fifty percent lethal dose (LD(50)) and competence index experiments showed that both the cdsA and cdsB loci were involved in the pathogenesis of the bacteria. In conclusion, this study has shown for the first time in bacteria the existence of an l-cysteine uptake system that together with an additional l-cysteine desulfidase-encoding gene constitutes a novel operon involved in bacterial virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Cistationina gama-Liase/metabolismo , Cisteína/metabolismo , Doenças dos Peixes/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Óperon , Yersiniose/veterinária , Yersinia ruckeri/patogenicidade , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico , Cistationina gama-Liase/química , Cistationina gama-Liase/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Oncorhynchus mykiss/microbiologia , Alinhamento de Sequência , Yersiniose/microbiologia , Yersinia ruckeri/enzimologia , Yersinia ruckeri/genética , Yersinia ruckeri/metabolismo
8.
Microbiology (Reading) ; 157(Pt 4): 1196-1204, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21292745

RESUMO

Flavobacterium psychrophilum is a very significant fish pathogen that secretes two biochemically characterized extracellular proteolytic enzymes, Fpp1 and Fpp2. The genes encoding these enzymes are organized as an fpp2-fpp1 tandem in the genome of strain F. psychrophilum THC02/90. Analysis of the corresponding encoded proteins showed that they belong to two different protease families. For gene function analysis, new genetic tools were developed in F. psychrophilum by constructing stable isogenic fpp1 and fpp2 mutants via single-crossover homologous recombination. RT-PCR analysis of wild-type and mutant strains suggested that both genes are transcribed as a single mRNA from the promoter located upstream of the fpp2 gene. Phenotypic characterization of the fpp2 mutant showed lack of caseinolytic activity and higher colony spreading compared with the wild-type strain. Both characteristics were recovered in the complemented strain. One objective of this work was to assess the contribution to virulence of these proteolytic enzymes. LD(50) experiments using the wild-type strain and mutants showed no significant differences in virulence in a rainbow trout challenge model, suggesting instead a possible nutritional role. The gene disruption procedure developed in this work, together with the knowledge of the complete genome sequence of F. psychrophilum, open new perspectives for the study of gene function in this bacterium.


Assuntos
Doenças dos Peixes/microbiologia , Flavobacterium/enzimologia , Mutação , Peptídeo Hidrolases/metabolismo , Fatores de Virulência/metabolismo , Animais , Caseínas/metabolismo , Doenças dos Peixes/mortalidade , Flavobacterium/genética , Flavobacterium/isolamento & purificação , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Teste de Complementação Genética , Dose Letal Mediana , Oncorhynchus mykiss , Peptídeo Hidrolases/genética , Regiões Promotoras Genéticas , Recombinação Genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Virulência , Fatores de Virulência/genética
9.
Microbiology (Reading) ; 157(Pt 7): 2106-2119, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21546587

RESUMO

Lactococcus garvieae is the causative microbial agent of lactococcosis, an important and damaging fish disease in aquaculture. This bacterium has also been isolated from vegetables, milk, cheese, meat and sausages, from cow and buffalo as a mastitis agent, and even from humans, as an opportunistic infectious agent. In this work pathogenicity experiments were performed in rainbow trout and mouse models with strains isolated from human (L. garvieae HF) and rainbow trout (L. garvieae UNIUDO74; henceforth referred to as 074). The mean LD(50) value in rainbow trout obtained for strain 074 was 2.1 × 10(2) ± 84 per fish. High doses of the bacteria caused specific signs of disease as well as histological alterations in mice. In contrast, strain HF did not prove to be pathogenic either for rainbow trout or for mice. Based on these virulence differences, two suppressive subtractive hybridizations were carried out to identify unique genetic sequences present in L. garvieae HF (SSHI) and L. garvieae 074 (SSHII). Differential dot-blot screening of the subtracted libraries allowed the identification of 26 and 13 putative ORFs specific for L. garvieae HF and L. garvieae 074, respectively. Additionally, a PCR-based screening of 12 of the 26 HF-specific putative ORFs and the 13 074-specific ones was conducted to identify their presence/absence in 25 L. garvieae strains isolated from different origins and geographical areas. This study demonstrates the existence of genetic heterogeneity within L. garvieae isolates and provides a more complete picture of the genetic background of this bacterium.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Lactococcus/genética , Lactococcus/patogenicidade , Oncorhynchus mykiss/microbiologia , Animais , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , Variação Genética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Lactococcus/isolamento & purificação , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Virulência/genética
10.
Appl Environ Microbiol ; 77(3): 1107-10, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21131526

RESUMO

A three-gene operon, named yctCBA (Yersinia citrate transporter), induced by citrate and repressed by glucose was identified from a previously selected in vivo-induced (ivi) clone in the fish pathogen Yersinia ruckeri. Interestingly, despite being an ivi clone, the drastic growth reduction of the yctC mutant in the presence of citrate, and the relatively high content of this compound in rainbow trout serum, the operon was not required for virulence.


Assuntos
Ácido Cítrico/metabolismo , Doenças dos Peixes/microbiologia , Oncorhynchus mykiss/microbiologia , Óperon , Yersiniose/veterinária , Yersinia ruckeri/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dados de Sequência Molecular , Mutação , Análise de Sequência de DNA , Virulência , Yersiniose/microbiologia , Yersinia ruckeri/genética , Yersinia ruckeri/crescimento & desenvolvimento , Yersinia ruckeri/metabolismo
11.
Methods Mol Biol ; 2081: 69-80, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31721119

RESUMO

Bioluminescent reporters and advanced luciferase technologies are useful to study host-pathogen interactions. This chapter describes the use of the luxCDABE operon from Photorhabdus luminescens as a tool to analyze the progression of the fish pathogen Yersinia ruckeri during the infection of rainbow trout, as well as the quantification of promoter activity of specific bacterial genes during host colonization.


Assuntos
Doenças dos Peixes/diagnóstico , Doenças dos Peixes/microbiologia , Medições Luminescentes/métodos , Yersiniose/veterinária , Yersinia ruckeri , Animais , Expressão Gênica , Ordem dos Genes , Genes Reporter , Oncorhynchus mykiss/microbiologia , Óperon , Plasmídeos/genética , Regiões Promotoras Genéticas
12.
Int Microbiol ; 12(4): 207-14, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20112225

RESUMO

Colonies of the fish pathogen Flavobacterium psychrophilum have gliding motility in media with low agar concentrations. Although gliding motility, particularly in Flavobacterium johnsoniae, has been well-studied, little is known about its regulation by environmental factors. The work described here shows that the ability of F. psychrophilum to spread over surfaces depends on nutrient availability. In fact, as the nutrient contents of the medium decreased, spreading was favored and the diameter of the colonies increased. Macroscopy examination revealed modifications in colony morphology as nutrient depletion increased: from a dense and defined colony to the formation of microcolonies inside a general colony structure. Additionally, colony expansion dynamics and population density across the colony radius varied inversely with bacterial biomass production. Motility was an immediate response when bacteria were transferred from a rich to a more diluted medium. Our results suggest that, when nutrients are limiting, F. psychrophilum activates a specific growth mode that enables it to colonize surfaces by means of gliding motility. The use of diluted media allowed the differentiation, among previously isolated F. psychrophilum non-gliding mutants, of those completely unable to glide and those with only partially impaired gliding ability.


Assuntos
Biomassa , Flavobacterium/fisiologia , Locomoção , Estresse Fisiológico , Meios de Cultura/química , Flavobacterium/crescimento & desenvolvimento , Flavobacterium/metabolismo , Microscopia
13.
Artigo em Inglês | MEDLINE | ID: mdl-29998086

RESUMO

Finding the keys to understanding the infectious process of Yersinia ruckeri was not a priority for many years due to the prompt development of an effective biotype 1 vaccine which was used mainly in Europe and USA. However, the gradual emergence of outbreaks in vaccinated fish, which have been reported since 2003, has awakened interest in the mechanism of virulence in this pathogen. Thus, during the last two decades, a large number of studies have considerably enriched our knowledge of many aspects of the pathogen and its interaction with the host. By means of both conventional and a variety of novel strategies, such as cell GFP tagging, bioluminescence imaging and optical projection tomography, it has been possible to determine three putative Y. ruckeri infection routes, the main point of entry for the bacterium being the gill lamellae. Moreover, a wide range of potential virulence factors have been highlighted by specific gene mutagenesis strategies or genome-wide transposon/plasmid insertion-based screening approaches, such us in vivo expression technology (IVET) and signature tagged mutagenesis (STM). Finally, recent proteomic and whole genomic analyses have allowed many of the genes and systems that are potentially implicated in the organism's pathogenicity and its adaptation to the host environmental conditions to be elucidated. Altogether, these studies contribute to a better understanding of the infectious process of Y. ruckeri in fish, which is crucial for the development of more effective strategies for preventing or treating enteric redmouth disease (ERM).


Assuntos
Doenças dos Peixes/patologia , Doenças dos Peixes/fisiopatologia , Interações Hospedeiro-Patógeno , Yersiniose/veterinária , Yersinia ruckeri/crescimento & desenvolvimento , Yersinia ruckeri/patogenicidade , Animais , Peixes , Yersiniose/patologia , Yersiniose/fisiopatologia
14.
Front Microbiol ; 9: 1098, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887855

RESUMO

Yersinia ruckeri is a bacterium causing fish infection processes at temperatures below the optimum for growth. A derivative Tn5 transposon was used to construct a library of Y. ruckeri mutants with transcriptional fusions between the interrupted genes and the promoterless luxCDABE and lacZY operons. In vitro analysis of ß-galactosidase activity allowed the identification of 168 clones having higher expression at 18°C than at 28°C. Among the interrupted genes a SAM-dependent methyltransferase, a diguanylated cyclase, three genes involved in legionaminic acid synthesis and three transcriptional regulators were defined. In order to determine, via bioluminescence emission, the in vivo expression of some of these genes, two of the selected mutants were studied. In one of them, the acrR gene coding a repressor involved in regulation of the AcrAB-TolC expulsion pump was interrupted. This mutant was found to be highly resistant to compounds such as chloramphenicol, tetracycline, and ciprofloxacin. Although acrR mutation was not related to virulence in Y. ruckeri, this mutant was useful to analyze acrR expression in fish tissues in vivo. The other gene studied was osmY which is activated under osmotic stress and is involved in virulence. In this case, complemented mutant was used for experiments with fish. In vivo analysis of bioluminescence emission by these two strains showed higher values for acrR in gut, liver and adipose tissue, whereas osmY showed higher luminescence in gut and, at the end of the infection process, in muscle tissue. Similar results were obtained in ex vivo assays using rainbow trout tissues. The results indicated that this kind of approach was useful for the identification of genes related to virulence in Y. ruckeri and also for the in vivo and in vitro studies of each of the selected genes.

15.
Microbiologyopen ; 6(4)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28317294

RESUMO

Despite the existence of a commercial vaccine routinely used to protect salmonids against Yersinia ruckeri, outbreaks still occur, mainly caused by nonmotile and lipase-negative strains (serotype O1 biotype 2). Moreover, epizootics caused by other uncommon serotypes have also been reported. At the moment, one of the main concerns for the aquaculture industry is the expanding range of hosts of this pathogen and the emergence of new biotypes and serotypes causing mortality in fish farms and against which the vaccine cannot protect. The comparative analysis of the genome sequences of five Y. ruckeri strains (150, CSF007-82, ATCC29473, Big Creek 74, and SC09) isolated from different hosts and classified into different serotypes revealed important genetic differences between the genomes analyzed. Thus, a clear genetic differentiation was found between serotype O1 and O2 strains. The presence of 99 unique genes in Big Creek 74 and 261 in SC09 could explain the adaptation of these strains to salmon and catfish, respectively. Finally, the absence of 21 genes in ATCC29473 which are present in the other four virulent strains could underpin the attenuation described for this strain. The study reveals important genetic differences among the genomes analyzed. Further investigation of the genes highlighted in this study could provide insights into the understanding of the virulence and niche adaptive mechanisms of Y. ruckeri.


Assuntos
Peixes-Gato/microbiologia , Variação Genética , Genoma Bacteriano , Salmão/microbiologia , Sorogrupo , Yersinia ruckeri/classificação , Yersinia ruckeri/genética , Adaptação Biológica , Animais , Virulência , Yersinia ruckeri/isolamento & purificação , Yersinia ruckeri/patogenicidade
16.
Genome Announc ; 5(8)2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28232446

RESUMO

We report here the complete annotated genome sequence of Flavobacterium psychrophilum OSU THCO2-90, isolated from Coho salmon (Oncorhynchus kisutch) in Oregon. The genome consists of a circular chromosome with 2,343 predicted open reading frames. This strain has proved to be a valuable tool for functional genomics.

17.
Front Microbiol ; 8: 2168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163446

RESUMO

A fascinating characteristic of most members of the genus Flavobacterium is their ability to move over surfaces by gliding motility. Flavobacterium psychrophilum, an important pathogen of farmed salmonids worldwide, contains in its genome the 19 gld and spr genes shown to be required for gliding or spreading in Flavobacterium johnsoniae; however, their relative role in its lifestyle remains unknown. In order to address this issue, two spreading deficient mutants were produced as part of a Tn4351 mutant library in F. psychrophilum strain THCO2-90. The transposons were inserted in gldD and gldG genes. While the wild-type strain is proficient in adhesion, biofilm formation and displays strong proteolytic activity, both mutants lost these characteristics. Extracellular proteome comparisons revealed important modifications for both mutants, with a significant reduction of the amounts of proteins likely transported through the outer membrane by the Type IX secretion system, indicating that GldD and GldG proteins are required for an effective activity of this system. In addition, a significant decrease in virulence was observed using rainbow trout bath and injection infection models. Our results reveal additional roles of gldD and gldG genes that are likely of importance for the F. psychrophilum lifestyle, including virulence.

18.
Res Microbiol ; 157(6): 575-81, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16797929

RESUMO

This paper reports the development of genetic tools in Lactococcus garvieae, an important Gram-positive bacterial pathogen affecting both fish and mammals. The vector pGKV210, a broad host range vector, was introduced by electroporation into L. garvieae UNIUD074. The maximal frequency obtained was 3.2 x 10(5) transformants/mug of DNA. Moreover, this effect is highly reproducible and appears to be constant, since all L. garvieae strains tested were transformed. Once the optimal transformation procedure was established, it was used to generate isogenic and transposition mutants. Insertional mutagenesis of the L. garvieae SA9H10L gene, similar to a Streptococcus pyogenes gene encoding the M protein (emm64), was carried out using the conditional replication plasmid pORI19. Transposition mutagenesis using the streptococcal temperature-sensitive suicide vector pTV408 to deliver Tn917 into the chromosome of L. garvieae was also achieved at a frequency of ca. 10(-4). Transposon flanking DNA sequences were obtained by plasmid rescue in Escherichia coli and their sequencing analysis demonstrated that the transposon was inserted at different chromosomal loci. Tn917 also made it possible to select a mutant in the operon involved in mannitol fermentation in this microorganism. The results obtained in the present study lay the foundation for future research on the virulence mechanisms of L. garvieae.


Assuntos
Elementos de DNA Transponíveis , Biblioteca Gênica , Lactococcus/genética , Cromossomos Bacterianos , Eletroporação , Fermentação , Regulação Bacteriana da Expressão Gênica , Lactococcus/fisiologia , Manitol/metabolismo , Mutagênese Insercional , Plasmídeos , Transformação Bacteriana
19.
Genome Announc ; 4(6)2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27908991

RESUMO

We present here the draft genome of a pathogenic Yersinia ruckeri strain, isolated from rainbow trout (Oncorhynchus mykiss) affected by enteric redmouth disease. The chromosome has 3,826,775 bp, a GC content of 46.88%, and is predicted to contain 3,538 coding sequences. The data will be useful for comparative pathogenicity studies.

20.
PLoS One ; 10(2): e0117969, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25692569

RESUMO

Flavobacterium psychrophilum is a Gram-negative fish pathogen that causes important economic losses in aquaculture worldwide. Although the genome of this bacterium has been determined, the function and relative importance of genes in relation to virulence remain to be established. To investigate their respective contribution to the bacterial pathogenesis, effective tools for gene inactivation are required. In the present study, a markerless gene deletion system has been successfully developed for the first time in this bacterium. Using this method, the F. psychrophilum fcpB gene, encoding a predicted cysteine protease homologous to Streptococcus pyogenes streptopain, was deleted. The developed system involved the construction of a conjugative plasmid that harbors the flanking sequences of the fcpB gene and an I-SceI meganuclease restriction site. Once this plasmid was integrated in the genome by homologous recombination, the merodiploid was resolved by the introduction of a plasmid expressing I-SceI under the control of the fpp2 F. psychrophilum inducible promoter. The resulting deleted fcpB mutant presented a decrease in extracellular proteolytic activity compared to the parental strain. However, there were not significant differences between their LD50 in an intramuscularly challenged rainbow trout infection model. The mutagenesis approach developed in this work represents an improvement over the gene inactivation tools existing hitherto for this "fastidious" bacterium. Unlike transposon mutagenesis and gene disruption, gene markerless deletion has less potential for polar effects and allows the mutation of virtually any non-essential gene or gene clusters.


Assuntos
Flavobacterium/genética , Deleção de Genes , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Flavobacterium/fisiologia , Dose Letal Mediana , Oncorhynchus mykiss/microbiologia , Fenótipo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA