Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3729, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355737

RESUMO

Electrodes with nanostructured surface have emerged as promising low-impedance neural interfaces that can avoid the charge-injection restrictions typically associated to microelectrodes. In this work, we propose a novel approximation, based on a two-step template assisted electrodeposition technique, to obtain flexible nanostructured electrodes coated with core-shell Ni-Au vertical nanowires. These nanowires benefit from biocompatibility of the Au shell exposed to the environment and the mechanical properties of Ni that allow for nanowires longer and more homogeneous in length than their only-Au counterparts. The nanostructured electrodes show impedance values, measured by electrochemical impedance spectroscopy (EIS), at least 9 times lower than those of flat reference electrodes. This ratio is in good accordance with the increased effective surface area determined both from SEM images and cyclic voltammetry measurements, evidencing that only Au is exposed to the medium. The observed EIS profile evolution of Ni-Au electrodes over 7 days were very close to those of Au electrodes and differently from Ni ones. Finally, the morphology, viability and neuronal differentiation of rat embryonic cortical cells cultured on Ni-Au NW electrodes were found to be similar to those on control (glass) substrates and Au NW electrodes, accompanied by a lower glial cell differentiation. This positive in-vitro neural cell behavior encourages further investigation to explore the tissue responses that the implantation of these nanostructured electrodes might elicit in healthy (damaged) neural tissues in vivo, with special emphasis on eventual tissue encapsulation.


Assuntos
Nanoestruturas , Nanofios , Ratos , Animais , Eletrodos , Microeletrodos , Neurônios/fisiologia , Impedância Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA