Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Curr Microbiol ; 80(1): 26, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474118

RESUMO

Recent advances in understanding the symbiotic interactions between bacteria and fruit flies have shown that they are relevant for mass rearing and the sterile insect technique (SIT). SIT involves mass production and release of sterile insects that would copulate with their wild conspecifics and thus decrease the population growth rate. The irradiation process used to sterilize mass-reared flies can modify the diversity and structure of the midgut bacterial communities, which could affect sterile male survival, flight capacity, and sexual competitiveness. Our aim was to compare bacterial communities in the midgut of wild and mass-reared Anastrepha obliqua (Macquart) males irradiated at 0, 60, and 80 Gy. After adult's emergence, their midguts were dissected, DNA was extracted, and high-throughput sequencing of the V3-V4 region of the 16S rDNA gene was performed. A total of 11 phyla, 17 classes, 47 families, and 52 genera of bacteria were identified. The most representative phylum was Proteobacteria and the predominant family was Enterobacteriaceae. We found that wild males had a different intestinal bacterial community from mass-reared males. In addition, irradiation at 60 and 80 Gy caused changes in the diversity and structure of the midgut microbiota of these sterile males, suggesting that mass rearing and irradiation cause artificial selection of the bacterial communities in the gut of A. obliqua males.


Assuntos
Bactérias , Masculino , Animais , Bactérias/genética
2.
Exp Appl Acarol ; 85(1): 1-17, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34581908

RESUMO

Tenuipalpid mites of the genus Brevipalpus are of significant economic and quarantine importance in agriculture. They can damage and vector phytopathogenic viruses in coffee plantations and other crops. In this study, we focused on: identification of the Brevipalpus species, assessment of the spread of Brevipalpus-associated viruses (CoRSV, CiLV-N, CiLVC and CiLVC2), and mite population fluctuations over the course of 1 year. The study was conducted in coffee plantations in Soconusco, a coffee-producing region in Chiapas, Mexico. The collected mites of the Brevipalpus phoenicis sensu lato species complex (635) were identified as Brevipalpus papayensis (80.2%) and B. yothersi (19.8%) based on morphological and molecular characteristics. Their population abundance was low and there were no indications for virosis. The highest mite abundance was recorded in August-September and the lowest in February-March. An interaction was observed between mite abundance and coffee species in open-growth and shaded cultivation at various altitudes. Brevipalpus papayensis was most abundant in Coffea arabica var. Bourbon, in shaded (80%) growing conditions at an altitude of 1300 m above sea level. In C. canephora (in open-growth cultivation conditions at low altitude), B. yothersi was more abundant than in C. arabica, and as abundant as B. papayensis. We are of the opinion that, at this moment, B. papayensis and B. yothersi do not present risks to the production of coffee for the studied plantations. However, as the coffee-producing regions of Mexico are ecologically diverse, it will be important to continue examining the status of Brevipalpus mite populations in other regions in Mexico.


Assuntos
Coffea , Ácaros , Altitude , Animais , Café , México
3.
Arch Insect Biochem Physiol ; 99(4): e21513, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30387887

RESUMO

In this study cuticular hydrocarbons (CHCs) were characterized from wings of individual unmated males of different Anastrepha ludens (Loew) mass-reared strains of different ages (3 and 19-day-old): (a) a standard mass-reared colony (control), (b) a genetic sexing strain, (c) a selected strain, (d) a hybrid strain, and (e) wild males. We found that the hydrocarbon profiles in all males included two n-alkanes, five monomethyl alkanes, and two alkenes. CHCs ranged from C26 to C31 . The most prominent peaks were 2-methyloctacosane (2-Me-C28), n-nonacosene (C29:1), 2-methyltriacontane (2-Me-C30), and n-hentriacontene (C31:1). Significant variations in the CHC amounts of the mass-reared strains were observed from Day 9 and thereafter. Comparison of CHCs using multivariate and canonical analyses across ages and among mass-reared strains and wild males revealed qualitative and quantitative differences. The relative amounts of C29:1 and 2-Me-C30 were significantly higher across age groups in the mass-reared strains than those in the wild males. In contrast, amounts of n-nonacosane (C29) significantly increased in wild males as they aged. Through statistical analyses, we inferred that CHC amounts vary with age. Wild males differed significantly from the mass-reared strains in the amount of C29, and the genetic sexing strain Tap-7 had significantly higher values for 2-methylhexacosane (2-Me-C26). In contrast the selected and control strain differed from the other strains in amounts of C29:1 and 2-Me-C30. We suggest that differential profiles in hydrocarbon composition among the strains may be mainly due to environmental pressures.


Assuntos
Envelhecimento/fisiologia , Hidrocarbonetos/metabolismo , Tegumento Comum/fisiologia , Tephritidae/fisiologia , Animais , Hidrocarbonetos/química , Masculino , Tephritidae/classificação , Tephritidae/crescimento & desenvolvimento
4.
Rev Argent Microbiol ; 50(3): 234-243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29289440

RESUMO

The goal of this study was to isolate, select and characterize bacteria with cellulolytic activity from two different coffee residue composting piles, one of which had an internal temperature of 57°C and pH 5.5 and the other, a temperature of 61°C, and pH 9.3. Culture media were manipulated with carboxymethylcellulose and crystalline cellulose as sole carbon sources. The enzyme activity was assessed by hydrolysis halo formation, reducing sugar production and zymograms. Three out of twenty isolated strains showed higher enzymatic activity and were identified as Bacillus subtilis according to their morphological, physiological, biochemical characteristics and based on the sequence analysis of 16S rDNA regions. The enzymatic extracts of the three selected strains showed exocellulase and endocellulase maximum activity of 0.254 and 0.519 U/ml, respectively; the activity of these enzymes was maintained even in acid pH (4.8) and basic (9.3) and at temperatures of up to 60°C. The enzymatic activities observed in this study are within the highest reported for cellulose produced by bacteria of the genus Bacillus. Endocellulase activity was shown in the zymograms from 24h until 144h of incubation. Furthermore, the pH effect on the endocellulase activity is reported for the first time by zymograms. The findings in this study entail the possibility to use these enzymes in the procurement of fermentable substrates for the production of energy from the large amount of residues generated by the coffee agroindustry.


Assuntos
Bacillus subtilis , Celulases , Café , Bacillus subtilis/enzimologia , Bacillus subtilis/isolamento & purificação , Celulases/metabolismo , Celulose , Compostagem
5.
Rev Argent Microbiol ; 49(2): 189-196, 2017.
Artigo em Espanhol | MEDLINE | ID: mdl-28431786

RESUMO

Paraquat is a widely used herbicide in agriculture. Its inappropriate use and wide distribution represents a serious pollution problem for soil and water. White rot fungi are capable of degrading pollutants having a similar structure to that of lignin, such as paraquat. This study evaluated the degradation effect of paraquat on the production of ligninolytic enzymes by white rot fungi isolated from the South of Mexico. Six fungal strains showed tolerance to the herbicide in solid culture. Three of the six evaluated strains showed levels of degradation of 32, 26 and 47% (Polyporus tricholoma, Cilindrobasidium laeve and Deconica citrispora, respectively) after twelve days of cultivation in the presence of the xenobiotic. An increase in laccase and manganese peroxidase (MnP) activities was detected in the strains showing the highest percentage of degradation. Experiments were done with enzyme extracts from the extracellular medium with the two strains showing more degradation potential and enzyme production. After 24hours of incubation, a degradation of 49% of the initial paraquat concentration was observed for D. citrispora. These results suggest that paraquat degradation can be attributed to the presence of extracellular enzymes from white rot fungi. In this work the first evidence of the biodegradation potential of D. citrispora and Cilindrobasidium leave is shown.


Assuntos
Fungos , Herbicidas , Paraquat , Peroxidases , Biodegradação Ambiental , Fungos/enzimologia , Herbicidas/metabolismo , Lacase , Lignina , México , Paraquat/metabolismo
6.
Mycorrhiza ; 26(5): 353-65, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26732875

RESUMO

Orchidaceae establish symbiotic relationships with fungi in the Rhizoctonia group, resulting in interactions beneficial to both organisms or in cell destruction in one of them (pathogenicity). Previous studies have focused mostly on terrestrial species with a few, preliminary studies, on epiphytes. To further our understanding of the molecular mechanisms involved in these symbioses, we evaluated the interaction between Oncidium sphacelatum Lindl. and the mycorrhizal fungus Thanatephorus sp. strain RG26 (isolated from a different orchid species) in vitro using morphometric and proteomic analyses. Evidence from the morphometric and microscopic analysis showed that the fungus promoted linear growth and differentiation of orchid protocorms during 98 days interaction. On day 63, protocorm development was evident, so we analyzed the physiological response of both organisms at that moment. Proteome results suggest that orchid development stimulated by the fungus apparently involves cell cycle proteins, purine recycling, ribosome biogenesis, energy metabolism, and secretion that were up-regulated in the orchid; whereas in the fungus, a high expression of proteins implicated in stress response, protein-protein interaction, and saccharides and protein biosynthesis were found in the symbiotic interaction. This is the first work reporting proteins differentially expressed in the epiphytic orchid-fungus interaction and will contribute to the search for molecular markers that will facilitate the study of this symbiosis in both wild orchids and those in danger of extinction.


Assuntos
Basidiomycota/fisiologia , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/microbiologia , Basidiomycota/classificação , Basidiomycota/genética , Biomarcadores , Regulação Fúngica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Orchidaceae/ultraestrutura , Filogenia , Proteômica , Simbiose
7.
World J Microbiol Biotechnol ; 30(1): 33-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23824666

RESUMO

With the goal of understanding the chitinolytic mechanism of the potential biological control strain Serratia marcescens CFFSUR-B2, genes encoding chitinases ChiA, ChiB and ChiC, chitobiase (Chb) and chitin binding protein (CBP) were cloned, the protein products overexpressed in Escherichia coli as 6His-Sumo fusion proteins and purified by affinity chromatography. Following affinity tag removal, the chitinolytic activity of the recombinant proteins was evaluated individually and in combination using colloidal chitin as substrate. ChiB and ChiC were highly active while ChiA was inactive. Reactions containing both ChiB and ChiC showed significantly increased N-acetylglucosamine trimer and dimer formation, but decreased monomer formation, compared to reactions with either enzyme alone. This suggests that while both ChiB and ChiC have a general affinity for the same substrate, they attack different sites and together degrade chitin more efficiently than either enzyme separately. Chb and CBP in combination with ChiB and ChiC (individually or together) increased their chitinase activity. We report for the first time the potentiating effect of Chb on the activity of the chitinases and the synergistic activity of a mixture of all five proteins (the three chitinases, Chb and CBP). These results contribute to our understanding of the mechanism of action of the chitinases produced by strain CFFSUR-B2 and provide a molecular basis for its high potential as a biocontrol agent against fungal pathogens.


Assuntos
Acetilglucosaminidase/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Quitina/metabolismo , Quitinases/metabolismo , Serratia marcescens/enzimologia , Acetilglucosaminidase/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Quitinases/genética , Cromatografia de Afinidade , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Serratia marcescens/genética , Serratia marcescens/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-39161647

RESUMO

Background: Members of the genus Cupiennius Simon, 1891 are categorized as wandering spiders and are part of the family Trechaleidae. The genomics and proteomics of Cupiennius spiders from North America remain uncharacterized. The present study explores for the first time molecular data from the endemic species Cupiennius chiapanensis Medina, 2006, and also presents new data for Cupiennius salei (Keyserling, 1878), both collected in southern Mexico. Methods: In total, 88 Cupiennius specimens were collected from southern Mexico and morphologically identified. DNA was extracted and the mitochondrial COI fragment was amplified. COI sequences were analyzed, and a phylogenetic tree was inferred for species from the Americas. Genetic diversity was analyzed using haplotype networks and gene distances. Venom was obtained from C. chiapanensis and C. salei by electrostimulation. The venom was separated by HPLC, visualized using SDS-PAGE, and quantified for use in toxicity bioassays in mice and insects. Results: Analysis of COI sequences from C. chiapanensis showed 94% identity with C. salei, while C. salei exhibited 94-97% identity with sequences from Central and South American conspecifics. The venom from C. chiapanensis exhibited toxic activity against crickets. Venoms from C. chiapanensis and C. salei caused death in Anastrepha obliqua flies. Analysis of venom fractions from C. salei and C. chiapanensis revealed molecular masses of a similar size as some previously reported toxins and neurotoxic components. We determined the amino acid sequences of ChiaTx1 and ChiaTx2, toxins that are reported here for the first time and which showed toxicity against mice and insects. Conclusion: Our work is the first to report COI-based DNA barcoding sequences from southern Mexican Cupiennius spiders. Compounds with toxic activity were identified in venom from both species.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36721428

RESUMO

Background: Phonotimpus pennimani (Araneae, Phrurolithidae) is a small-sized (3-5 mm) spider endemic to the Tacaná volcano in Chiapas, Mexico, where it is found in soil litter of cloud forests and coffee plantations. Its venom composition has so far not been investigated, partly because it is not a species of medical significance. However, it does have an important impact on the arthropod populations of its natural habitat. Methods: Specimens were collected in Southeastern Mexico (Chiapas) and identified taxonomically by morphological characteristics. A partial sequence from the mitochondrial gene coxI was amplified. Sequencing on the Illumina platform of a transcriptome library constructed from 12 adult specimens revealed 25 toxin or toxin-like genes. Transcripts were validated (RT-qPCR) by assessing the differential expression of the toxin-like PpenTox1 transcript and normalising with housekeeping genes. Results: Analysis of the coxI-gene revealed a similarity to other species of the family Phrurolithidae. Transcriptome analysis also revealed similarity with venom components of species from the families Ctenidae, Lycosidae, and Sicariidae. Expression of the toxin-like PpenTox1 gene was different for each developmental stage (juvenile or adult) and also for both sexes (female or male). Additionally, a partial sequence was obtained for the toxin-like PpenTox1 from DNA. Conclusion: Data from the amplification of the mitochondrial coxI gene confirmed that P. pennimani belongs to the family Phrurolithidae. New genes and transcripts coding for venom components were identified.

10.
Plants (Basel) ; 12(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36987062

RESUMO

In this study, the antifungal, biosurfactant and bioemulsifying activity of the lipopeptides produced by the marine bacterium Bacillus subtilis subsp. spizizenii MC6B-22 is presented. The kinetics showed that at 84 h, the highest yield of lipopeptides (556 mg/mL) with antifungal, biosurfactant, bioemulsifying and hemolytic activity was detected, finding a relationship with the sporulation of the bacteria. Based on the hemolytic activity, bio-guided purification methods were used to obtain the lipopeptide. By TLC, HPLC and MALDI-TOF, the mycosubtilin was identified as the main lipopeptide, and it was further confirmed by NRPS gene clusters prediction based on the strain's genome sequence, in addition to other genes related to antimicrobial activity. The lipopeptide showed a broad-spectrum activity against ten phytopathogens of tropical crops at a minimum inhibitory concentration of 400 to 25 µg/mL and with a fungicidal mode of action. In addition, it exhibited that biosurfactant and bioemulsifying activities remain stable over a wide range of salinity and pH and it can emulsify different hydrophobic substrates. These results demonstrate the potential of the MC6B-22 strain as a biocontrol agent for agriculture and its application in bioremediation and other biotechnological fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA