Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 12(1): 167-71, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22111988

RESUMO

Scanning and transmission electron microscopy was used to correlate the structure of planar defects with the prevalence of Au catalyst atom incorporation in Si nanowires. Site-specific high-resolution imaging along orthogonal zone axes, enabled by advances in focused ion beam cross sectioning, reveals substantial incorporation of catalyst atoms at grain boundaries in <110> oriented nanowires. In contrast, (111) stacking faults that generate new polytypes in <112> oriented nanowires do not show preferential catalyst incorporation. Tomographic reconstruction of the catalyst-nanowire interface is used to suggest criteria for the stability of planar defects that trap impurity atoms in catalyst-mediated nanowires.


Assuntos
Cristalização/métodos , Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Silício/química , Catálise , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
2.
Ultramicroscopy ; 184(Pt B): 90-97, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29102828

RESUMO

Analytical electron microscopy and spectroscopy of biological specimens, polymers, and other beam sensitive materials has been a challenging area due to irradiation damage. There is a pressing need to develop novel imaging and spectroscopic imaging methods that will minimize such sample damage as well as reduce the data acquisition time. The latter is useful for high-throughput analysis of materials structure and chemistry. In this work, we present a novel machine learning based method for dynamic sparse sampling of EDS data using a scanning electron microscope. Our method, based on the supervised learning approach for dynamic sampling algorithm and neural networks based classification of EDS data, allows a dramatic reduction in the total sampling of up to 90%, while maintaining the fidelity of the reconstructed elemental maps and spectroscopic data. We believe this approach will enable imaging and elemental mapping of materials that would otherwise be inaccessible to these analysis techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA