Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Mol Life Sci ; 77(24): 5243-5258, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32034429

RESUMO

Synaptic functional disturbances with concomitant synapse loss represent central pathological hallmarks of Alzheimer's disease. Excessive accumulation of cytotoxic amyloid oligomers is widely recognized as a key event that underlies neurodegeneration. Certain complement components are crucial instruments of widespread synapse loss because they can tag synapses with functional impairments leading to their engulfment by microglia. However, an exact understanding of the affected synaptic functions that predispose to complement-mediated synapse elimination is lacking. Therefore, we conducted systematic proteomic examinations on synaptosomes prepared from an amyloidogenic mouse model of Alzheimer's disease (APP/PS1). Synaptic fractions were separated according to the presence of the C1q-tag using fluorescence-activated synaptosome sorting and subjected to proteomic comparisons. The results raised the decline of mitochondrial functions in the C1q-tagged synapses of APP/PS1 mice based on enrichment analyses, which was verified using flow cytometry. Additionally, proteomics results revealed extensive alterations in the level of septin protein family members, which are known to dynamically form highly organized pre- and postsynaptic supramolecular structures, thereby affecting synaptic transmission. High-resolution microscopy investigations demonstrated that synapses with considerable amounts of septin-3 and septin-5 show increased accumulation of C1q in APP/PS1 mice compared to the wild-type ones. Moreover, a strong positive correlation was apparent between synaptic septin-3 levels and C1q deposition as revealed via flow cytometry and confocal microscopy examinations. In sum, our results imply that deterioration of synaptic mitochondrial functions and alterations in the organization of synaptic septins are associated with complement-dependent synapse loss in Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Amiloide/metabolismo , Proteoma/genética , Sinapses/genética , Doença de Alzheimer/patologia , Amiloide/toxicidade , Proteínas Amiloidogênicas/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Microglia/metabolismo , Microglia/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Oligopeptídeos/genética , Placa Amiloide/genética , Placa Amiloide/patologia , Septinas/genética , Sinapses/metabolismo , Sinapses/patologia , Sinaptossomos/metabolismo , Sinaptossomos/patologia
2.
Proc Natl Acad Sci U S A ; 115(24): 6303-6308, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29844190

RESUMO

C1q, a member of the immune complement cascade, is implicated in the selective pruning of synapses by microglial phagocytosis. C1q-mediated synapse elimination has been shown to occur during brain development, while increased activation and complement-dependent synapse loss is observed in neurodegenerative diseases. However, the molecular mechanisms underlying C1q-controlled synaptic pruning are mostly unknown. This study addresses distortions in the synaptic proteome leading to C1q-tagged synapses. Our data demonstrated the preferential localization of C1q to the presynapse. Proteomic investigation and pathway analysis of C1q-tagged synaptosomes revealed the presence of apoptotic-like processes in C1q-tagged synapses, which was confirmed experimentally with apoptosis markers. Moreover, the induction of synaptic apoptotic-like mechanisms in a model of sensory deprivation-induced synaptic depression led to elevated C1q levels. Our results unveiled that C1q label-based synaptic pruning is triggered by and directly linked to apoptotic-like processes in the synaptic compartment.


Assuntos
Apoptose/fisiologia , Complemento C1q/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Idoso , Ativação do Complemento/fisiologia , Humanos , Masculino , Microglia/metabolismo , Microglia/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Fagocitose/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Sinapses/metabolismo
3.
Amino Acids ; 52(11-12): 1529-1543, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33211194

RESUMO

Synaptosomes are frequently used research objects in neurobiology studies focusing on synaptic transmission as they mimic several aspects of the physiological synaptic functions. They contain the whole apparatus for neurotransmission, the presynaptic nerve ending with synaptic vesicles, synaptic mitochondria and often a segment of the postsynaptic membrane along with the postsynaptic density is attached to its outer surface. As being artificial functional organelles, synaptosomes are viable for several hours, retain their activity, membrane potential, and capable to store, release, and reuptake neurotransmitters. Synaptosomes are ideal subjects for proteomic analysis. The recently available separation and protein detection techniques can cope with the reduced complexity of the organelle and enable the simultaneous qualitative and quantitative analysis of thousands of proteins shaping the structural and functional characteristics of the synapse. Synaptosomes are formed during the homogenization of nervous tissue in the isoosmotic milieu and can be isolated from the homogenate by various approaches. Each enrichment method has its own benefits and drawbacks and there is not a single method that is optimal for all research purposes. For a proper proteomic experiment, it is desirable to preserve the native synaptic structure during the isolation procedure and keep the degree of contamination from other organelles or cell types as low as possible. In this article, we examined five synaptosome isolation methods from a proteomic point of view by the means of electron microscopy, Western blot, and liquid chromatography-mass spectrometry to compare their efficiency in the isolation of synaptosomes and depletion of contaminating subcellular structures. In our study, the different isolation procedures led to a largely overlapping pool of proteins with a fairly similar distribution of presynaptic, active zone, synaptic vesicle, and postsynaptic proteins; however, discrete differences were noticeable in individual postsynaptic proteins and in the number of identified transmembrane proteins. Much pronounced variance was observed in the degree of contamination with mitochondrial and glial structures. Therefore, we suggest that in selecting the appropriate isolation method for any neuroproteomics experiment carried out on synaptosomes, the degree and sort/source of contamination should be considered as a primary aspect.


Assuntos
Proteínas de Membrana/isolamento & purificação , Proteômica , Sinapses/metabolismo , Sinaptossomos/metabolismo , Animais , Encéfalo/metabolismo , Cromatografia Líquida , Humanos , Espectrometria de Massas , Potenciais da Membrana/genética , Proteínas de Membrana/genética , Microscopia Eletrônica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Sinapses/genética , Transmissão Sináptica/genética
4.
Mol Cell Neurosci ; 79: 64-80, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28087334

RESUMO

Acute total sleep deprivation (SD) impairs memory consolidation, attention, working memory and perception. Structural, electrophysiological and molecular experimental approaches provided evidences for the involvement of sleep in synaptic functions. Despite the wide scientific interest on the effects of sleep on the synapse, there is a lack of systematic investigation of sleep-related changes in the synaptic proteome. We isolated parietal cortical and thalamic synaptosomes of rats after 8h of total SD by gentle handling and 16h after the end of deprivation to investigate the short- and longer-term effects of SD on the synaptic proteome, respectively. The SD efficiency was verified by electrophysiology. Protein abundance alterations of the synaptosomes were analyzed by fluorescent two-dimensional differential gel electrophoresis and by tandem mass spectrometry. As several altered proteins were found to be involved in synaptic strength regulation, our data can support the synaptic homeostasis hypothesis function of sleep and highlight the long-term influence of SD after the recovery sleep period, mostly on cortical synapses. Furthermore, the large-scale and brain area-specific protein network change in the synapses may support both ideas of sleep-related synaptogenesis and molecular maintenance and reorganization in normal rat brain.


Assuntos
Córtex Cerebral/metabolismo , Proteoma/metabolismo , Privação do Sono/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo , Animais , Córtex Cerebral/ultraestrutura , Masculino , Proteoma/genética , Ratos , Ratos Sprague-Dawley , Privação do Sono/patologia , Sinapses/ultraestrutura , Tálamo/ultraestrutura
5.
Proteomics ; 16(22): 2911-2920, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27759936

RESUMO

The molecular composition of synaptic signal transduction machineries shapes synaptic neurotransmission. The repertoire of receptors, transporters and channels (RTCs) comprises major signaling events in the brain. RTCs are conventionally studied by candidate immunohistochemistry and biochemistry, which are low throughput with resolution greatly affected by available immunoreagents and membrane interference. Therefore, a comprehensive resource of synaptic brain RTCs is still lacking. In particular, studies on the detergent-soluble synaptosomal fraction, known to contain transporters and channels, are limited. We, therefore, performed sub-synaptosomal fractionation of rat cerebral cortex, followed by trypsin/chymotrypsin sequential digestion of a detergent-soluble synaptosomal fraction and a postsynaptic density preparation, stable-isotope tryptic peptide labeling and liquid chromatography mass spectrometry. Based on the current study, a total of 4784 synaptic proteins were submitted to the ProteomExchange database (PXD001948), including 274 receptors, 394 transporters/channels and 1377 transmembrane proteins. Function-based classification assigned 1781 proteins as probable drug targets with 834 directly linked to brain disorders. The analytical approach identified 499 RTCs that are not listed in the largest, curated database for synaptosomal proteins (SynProt). This is a threefold RTC increase over all other data collected to date. Taken together, we present a protein discovery resource that can serve as a benchmark for future molecular interrogation of synaptic connectivity.


Assuntos
Córtex Cerebral/química , Proteínas de Membrana Transportadoras/análise , Sinaptossomos/química , Animais , Fracionamento Celular , Detergentes/química , Masculino , Proteoma/análise , Proteômica , Ratos , Ratos Wistar , Solubilidade , Espectrometria de Massas em Tandem
6.
Brain Behav Immun ; 56: 289-309, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27058163

RESUMO

An increasing number of studies have revealed associations between pre- and perinatal immune activation and the development of schizophrenia and autism spectrum disorders (ASDs). Accordingly, neuroimmune crosstalk has a considerably large impact on brain development during early ontogenesis. While a plethora of heterogeneous abnormalities have already been described in established maternal immune activation (MIA) rodent and primate animal models, which highly correlate to those found in human diseases, the underlying molecular background remains obscure. In the current study, we describe the long-term effects of MIA on the neocortical pre- and postsynaptic proteome of adolescent rat offspring in detail. Molecular differences were revealed in sub-synaptic fractions, which were first thoroughly characterized using independent methods. The widespread proteomic examination of cortical samples from offspring exposed to maternal lipopolysaccharide administration at embryonic day 13.5 was conducted via combinations of different gel-based proteomic techniques and tandem mass spectrometry. Our experimentally validated proteomic data revealed more pre- than postsynaptic protein level changes in the offspring. The results propose the relevance of altered synaptic vesicle recycling, cytoskeletal structure and energy metabolism in the presynaptic region in addition to alterations in vesicle trafficking, the cytoskeleton and signal transduction in the postsynaptic compartment in MIA offspring. Differing levels of the prominent signaling regulator molecule calcium/calmodulin-dependent protein kinase II in the postsynapse was validated and identified specifically in the prefrontal cortex. Finally, several potential common molecular regulators of these altered proteins, which are already known to be implicated in schizophrenia and ASD, were identified and assessed. In summary, unexpectedly widespread changes in the synaptic molecular machinery in MIA rats were demonstrated which might underlie the pathological cortical functions that are characteristic of schizophrenia and ASD.


Assuntos
Córtex Pré-Frontal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteoma/metabolismo , Sinapses/metabolismo , Sinaptossomos/metabolismo , Animais , Transtorno do Espectro Autista/etiologia , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos/farmacologia , Masculino , Gravidez , Proteômica/métodos , Ratos , Ratos Wistar , Esquizofrenia/etiologia , Sinapses/patologia , Sinaptossomos/patologia
7.
Brain Behav Immun ; 35: 86-95, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24021561

RESUMO

Peripheral injection of bacterial lipopolysaccharide (LPS) facilitates 8-10Hz spike-wave discharges (SWD) characterizing absence epilepsy in WAG/Rij rats. It is unknown however, whether peripherally administered LPS is able to alter the generator areas of epileptic activity at the molecular level. We injected 1mg/kg dose of LPS intraperitoneally into WAG/Rij rats, recorded the body temperature and EEG, and examined the protein expression changes of the proteome 12h after injection in the fronto-parietal cortex and thalamus. We used fluorescent two-dimensional differential gel electrophoresis to investigate the expression profile. We found 16 differentially expressed proteins in the fronto-parietal cortex and 35 proteins in the thalamus. It is known that SWD genesis correlates with the transitional state of sleep-wake cycle thus we performed meta-analysis of the altered proteins in relation to inflammation, epilepsy as well as sleep. The analysis revealed that all categories are highly represented by the altered proteins and these protein-sets have considerable overlap. Protein network modeling suggested that the alterations in the proteome were largely induced by the immune response, which invokes the NFkB signaling pathway. The proteomics and computational analysis verified the known functional interplay between inflammation, epilepsy and sleep and highlighted proteins that are involved in their common synaptic mechanisms. Our physiological findings support the phenomenon that high dose of peripheral LPS injection increases SWD-number, modifies its duration as well as the sleep-wake stages and decreases body temperature.


Assuntos
Encéfalo/metabolismo , Epilepsia Tipo Ausência/metabolismo , Inflamação/metabolismo , Proteoma , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Tipo Ausência/fisiopatologia , Lipopolissacarídeos/toxicidade , Proteômica , Ratos , Ratos Endogâmicos , Ratos Wistar , Transdução de Sinais
8.
J Neurochem ; 122(4): 775-88, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22694054

RESUMO

The elucidation of entire sets of protease substrates ("proteodegradomes") is important for understanding proteolytic pathways, their networks, and their role in the regulation of cell function. Matrix metalloproteinase-9 (MMP-9) is an extracellularly operating protease that is expressed and released in the brain in response to enhanced neuronal activity. Under physiological conditions, MMP-9 is involved in neuronal plasticity, including long-term potentiation, learning, and memory. This function may be related to its activity at the synapse. Under pathological conditions (e.g., during excitotoxicity, stroke, and traumatic brain injury), when the concentration of glutamate is persistently increased, MMP-9 is detrimental to brain tissue. To assess the MMP-9 degradome, we used synaptoneurosomal fractions isolated from the hippocampus of wildtype and MMP-9 knockout mice. To induce MMP-9 activity, the synaptoneurosomal fractions were treated with 50 µM glutamate for 30 min at 37°C. To investigate MMP-9 targets, two-dimensional fluorescence difference gel electrophoresis was performed. This approach enabled the accurate analysis of differences in protein abundance between samples. The differential spots that contained potential MMP-9 substrates were excised from the gel, and proteins of interest were identified using mass spectrometry. Two novel MMP-9 targets were identified: synaptic cell adhesion molecule-2 and collapsin response mediator protein-2. The MMP-9-driven processing of the newly identified substrates was confirmed by western blot in primary hippocampal neurons after stimulation with either N-methyl-D-aspartate or glutamate or incubation with recombinant autoactivating MMP-9 and use of a specific inhibitor.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Animais , Western Blotting , Células Cultivadas , Densitometria , Eletroforese em Gel Bidimensional , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/farmacologia , Hipocampo/enzimologia , Hipocampo/ultraestrutura , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/farmacologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica , N-Metilaspartato/farmacologia , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão de Célula Nervosa/genética , Sinaptossomos/enzimologia , Sinaptossomos/ultraestrutura , Espectrometria de Massas em Tandem
9.
Mol Neurobiol ; 59(2): 1301-1319, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34988919

RESUMO

Sleep deprivation (SD) is commonplace in the modern way of life and has a substantial social, medical, and human cost. Sleep deprivation induces cognitive impairment such as loss of executive attention, working memory decline, poor emotion regulation, increased reaction times, and higher cognitive functions are particularly vulnerable to sleep loss. Furthermore, SD is associated with obesity, diabetes, cardiovascular diseases, cancer, and a vast majority of psychiatric and neurodegenerative disorders are accompanied by sleep disturbances. Despite the widespread scientific interest in the effect of sleep loss on synaptic function, there is a lack of investigation focusing on synaptic transmission on the proteome level. In the present study, we report the effects of SD and recovery period (RP) on the cortical synaptic proteome in rats. Synaptosomes were isolated after 8 h of SD performed by gentle handling and after 16 h of RP. The purity of synaptosome fraction was validated with western blot and electron microscopy, and the protein abundance alterations were analyzed by mass spectrometry. We observed that SD and RP have a wide impact on neurotransmitter-related proteins at both the presynaptic and postsynaptic membranes. The abundance of synaptic proteins has changed to a greater extent in consequence of SD than during RP: we identified 78 proteins with altered abundance after SD and 39 proteins after the course of RP. Levels of most of the altered proteins were upregulated during SD, while RP showed the opposite tendency, and three proteins (Gabbr1, Anks1b, and Decr1) showed abundance changes with opposite direction after SD and RP. The functional cluster analysis revealed that a majority of the altered proteins is related to signal transduction and regulation, synaptic transmission and synaptic assembly, protein and ion transport, and lipid and fatty acid metabolism, while the interaction network analysis revealed several connections between the significantly altered proteins and the molecular processes of synaptic plasticity or sleep. Our proteomic data implies suppression of SNARE-mediated synaptic vesicle exocytosis and impaired endocytic processes after sleep deprivation. Both SD and RP altered GABA neurotransmission and affected protein synthesis, several regulatory processes and signaling pathways, energy homeostatic processes, and metabolic pathways.


Assuntos
Proteoma , Privação do Sono , Animais , Córtex Cerebral/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Ratos , Privação do Sono/metabolismo , Sinapses/metabolismo
10.
Mol Neurobiol ; 55(10): 7839-7857, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29468564

RESUMO

Intracellular ß-amyloid (Aß) accumulation is an early event in Alzheimer's disease (AD) progression. Recently, it has been uncovered that presenilins (PSs), the key components of the amyloid precursor protein (APP) processing and the ß-amyloid producing γ-secretase complex, are highly enriched in a special sub-compartment of the endoplasmic reticulum (ER) functionally connected to mitochondria, called mitochondria-associated ER membrane (MAM). A current hypothesis of pathogenesis of Alzheimer's diseases (AD) suggests that MAM is involved in the initial phase of AD. Since MAM supplies mitochondria with essential proteins, the increasing level of PSs and ß-amyloid could lead to metabolic dysfunction because of the impairment of ER-mitochondrion crosstalk. To reveal the early molecular changes of this subcellular compartment in AD development MAM fraction was isolated from the cerebral cortex of 3 months old APP/PS1 mouse model of AD and age-matched C57BL/6 control mice, then mass spectrometry-based quantitative proteome analysis was performed. The enrichment and purity of MAM preparations were validated with EM, LC-MS/MS and protein enrichment analysis. Label-free LC-MS/MS was used to reveal the differences between the proteome of the transgenic and control mice. We obtained 77 increased and 49 decreased protein level changes in the range of - 6.365 to + 2.988, which have mitochondrial, ER or ribosomal localization according to Gene Ontology database. The highest degree of difference between the two groups was shown by the ATP-binding cassette G1 (Abcg1) which plays a crucial role in cholesterol metabolism and suppresses Aß accumulation. Most of the other protein changes were associated with increased protein synthesis, endoplasmic-reticulum-associated protein degradation (ERAD), oxidative stress response, decreased mitochondrial protein transport and ATP production. The interaction network analysis revealed a strong relationship between the detected MAM protein changes and AD. Moreover, it explored several MAM proteins with hub position suggesting their importance in Aß induced early MAM dysregulation. Our identified MAM protein changes precede the onset of dementia-like symptoms in the APP/PS1 model, suggesting their importance in the development of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Membranas Mitocondriais/metabolismo , Presenilina-1/metabolismo , Proteoma/metabolismo , Animais , Biologia Computacional , Modelos Animais de Doenças , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Biossíntese de Proteínas , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Coloração e Rotulagem
11.
Mol Neurobiol ; 55(5): 4253-4266, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28620701

RESUMO

Chronic cerebral hypoperfusion (CCH) evokes mild cognitive impairment (MCI) and contributes to the progression of vascular dementia and Alzheimer's disease (AD). How CCH induces these neurodegenerative processes that may spread along the synaptic network and whether they are detectable at the synaptic proteome level of the cerebral cortex remains to be established. In the present study, we report the synaptic protein changes in the cerebral cortex after stepwise bilateral common carotid artery occlusion (BCCAO) induced CCH in the rat. The occlusions were confirmed with magnetic resonance angiography 5 weeks after the surgery. Synaptosome fractions were prepared using sucrose gradient centrifugation from cerebral cortex dissected 7 weeks after the occlusion. The synaptic protein differences between the sham operated and CCH groups were analyzed with label-free nanoUHPLC-MS/MS. We identified 46 proteins showing altered abundance due to CCH. In particular, synaptic protein and lipid metabolism, as well as GABA shunt-related proteins showed increased while neurotransmission and synaptic assembly-related proteins showed decreased protein level changes in CCH rats. Protein network analysis of CCH-induced protein alterations suggested the importance of increased synaptic apolipoprotein E (APOE) level as a consequence of CCH. Therefore, the change in APOE level was confirmed with Western blotting. The identified synaptic protein changes would precede the onset of dementia-like symptoms in the CCH model, suggesting their importance in the development of vascular dementia.


Assuntos
Córtex Cerebral/metabolismo , Circulação Cerebrovascular , Proteoma/metabolismo , Sinapses/metabolismo , Animais , Apolipoproteínas E/metabolismo , Córtex Cerebral/diagnóstico por imagem , Angiografia por Ressonância Magnética , Masculino , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Ratos Wistar , Reprodutibilidade dos Testes , Sinapses/ultraestrutura , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
12.
J Proteomics ; 159: 54-66, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28286321

RESUMO

To establish synaptic proteome changes associated with motherhood, we isolated synaptosome fractions from the hypothalamus of mother rats and non-maternal control females at the 11th postpartum day. Proteomic analysis by two-dimensional differential gel electrophoresis combined with mass spectrometric protein identification established 26 significant proteins, 7 increasing and 19 decreasing protein levels in the dams. The altered proteins are mainly involved in energy homeostasis, protein folding, and metabolic processes suggesting the involvement of these cellular processes in maternal adaptations. The decrease in a significantly altered protein, complement component 1q subcomponent-binding protein (C1qbp) was validated with Western blotting. Furthermore, immunohistochemistry showed its presence in hypothalamic fibers and terminals in agreement with its presence in synaptosomes. We also found the expression of C1qbp in different hypothalamic nuclei including the preoptic area and the paraventricular hypothalamic nucleus at the protein and at the mRNA level using immunohistochemistry and in situ hybridization histochemistry, respectively. Bioinformatical network analysis revealed that cytokines, growth factors, and protein kinases are common regulators, which indicates a complex regulation of the proteome change in mothers. The results suggest that maternal responsiveness is associated with synaptic proteins level changes in the hypothalamus, and that growth factors and cytokines may govern these alterations. BIOLOGICAL SIGNIFICANCE: The period of motherhood is accompanied with several behavioral, neuroendocrine, emotional and metabolic adaptations in the brain. Although it is established that various hypothalamic networks participate in the maternal adaptations of the rodent brain, our knowledge on the molecular background of these alterations remains seriously limited. In the present study, we first determined that the functional alterations of the maternal brain can be detected at the level of the synaptic proteome in the hypothalamus. Independent confirmation of synaptic localization, and also the established decrease in the level of C1qbp protein suggest the validity of the data. Common regulators of altered proteins belonging to the growth factor and cytokine family suggest that the synaptic adaptation is governed by these extracellular signals and future studies should focus on their specific roles. Our study was also the first to describe the expression pattern of C1qbp in the hypothalamus, a protein potentially involved in mitochondrial and neuroimmunological regulations of synaptic plasticity. Its presence in the preoptic area responsible for maternal behaviors and also in the paraventricular hypothalamic and arcuate nuclei regulating hormonal levels suggests that the same proteins may be involved in different aspects of maternal adaptations. The conclusions of the present work contribute to establishing the molecular alterations that determine different maternal adaptations in the brain. Since maternal changes are models of neuronal plasticity in all social interactions, the reported results can affect a wide field of molecular and behavioral neuroscience.


Assuntos
Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Período Pós-Parto/metabolismo , Proteoma/biossíntese , Animais , Feminino , Período Pós-Parto/fisiologia , Ratos , Ratos Wistar
13.
Mol Neurobiol ; 54(3): 2060-2078, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26910821

RESUMO

Alzheimer's disease (AD) is a multifactorial disease of wide clinical heterogenity. Overproduction of amyloid precursor protein (APP) and accumulation of ß-amyloid (Aß) and tau proteins are important hallmarks of AD. The identification of early pathomechanisms of AD is critically important for discovery of early diagnosis markers. Decreased brain metabolism is one of the earliest clinical symptoms of AD that indicate mitochondrial dysfunction in the brain. We performed the first comprehensive study integrating synaptic and non-synaptic mitochondrial proteome analysis (two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry) in correlation with Aß progression in APP/PS1 mice (3, 6, and 9 months of age). We identified changes of 60 mitochondrial proteins that reflect the progressive effect of APP overproduction and Aß accumulation on mitochondrial processes. Most of the significantly affected proteins play role in the mitochondrial electron transport chain, citric acid cycle, oxidative stress, or apoptosis. Altered expression levels of Htra2 and Ethe1, which showed parallel changes in different age groups, were confirmed also by Western blot. The common regulator bioinformatical analysis suggests the regulatory role of tumor necrosis factor (TNF) in Aß-mediated mitochondrial protein changes. Our results are in accordance with the previous postmortem human brain proteomic studies in AD in the case of many proteins. Our results could open a new path of research aiming early mitochondrial molecular mechanisms of Aß accumulation as a prodromal stage of human AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Mitocôndrias/metabolismo , Proteoma/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/genética , Proteoma/genética
14.
J Proteomics ; 120: 142-57, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25782751

RESUMO

The synapse is a particularly important compartment of neurons. To reveal its molecular characteristics we isolated whole brain synaptic (sMito) and non-synaptic mitochondria (nsMito) from the mouse brain with purity validated by electron microscopy and fluorescence activated cell analysis and sorting. Two-dimensional differential gel electrophoresis and mass spectrometry based proteomics revealed 22 proteins with significantly higher and 34 proteins with significantly lower levels in sMito compared to nsMito. Expression differences in some oxidative stress related proteins, such as superoxide dismutase [Mn] (Sod2) and complement component 1Q subcomponent-binding protein (C1qbp), as well as some tricarboxylic acid cycle proteins, including isocitrate dehydrogenase subunit alpha (Idh3a) and ATP-forming ß subunit of succinyl-CoA ligase (SuclA2), were verified by Western blot, the latter two also by immunohistochemistry. The data suggest altered tricarboxylic acid metabolism in energy supply of synapse while the marked differences in Sod2 and C1qbp support high sensitivity of synapses to oxidative stress. Further functional clustering demonstrated that proteins with higher synaptic levels are involved in synaptic transmission, lactate and glutathione metabolism. In contrast, mitochondrial proteins associated with glucose, lipid, ketone metabolism, signal transduction, morphogenesis, protein synthesis and transcription were enriched in nsMito. Altogether, the results suggest a specifically tuned composition of synaptic mitochondria. BIOLOGICAL SIGNIFICANCE: Neurons communicate with each other through synapse, a compartment metabolically isolated from the cell body. Mitochondria are concentrated in presynaptic terminals by active transport to provide energy supply for information transfer. Mitochondrial composition in the synapse may be different than in the cell body as some examples have demonstrated altered mitochondrial composition with cell type and cellular function in the muscle, heart and liver. Therefore, we posed the question whether protein composition of synaptic mitochondria reflects its specific functions. The determined protein difference pattern was in accordance with known functional specialties of high demand synaptic mitochondria. The data also suggest specifically tuned metabolic fluxes for energy production by means of interaction with glial cells surrounding the synapse. These findings provide possible mechanisms for dynamically adapting synaptic mitochondrial output to actual demand. In turn, an increased vulnerability of synaptic mitochondria to oxidative stress is implied by the data. This is important from theoretical but potentially also from therapeutic aspects. Mitochondria are known to be affected in some neurodegenerative and psychiatric disorders, and proteins with elevated level in synaptic mitochondria, e.g. C1qbp represent targets for future drug development, by which synaptic and non-synaptic mitochondria can be differentially affected.


Assuntos
Encéfalo/metabolismo , Encéfalo/ultraestrutura , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Animais , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/metabolismo
15.
PLoS One ; 7(12): e50532, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23272063

RESUMO

Probing molecular brain mechanisms related to increased suicide risk is an important issue in biological psychiatry research. Gene expression studies on post mortem brains indicate extensive changes prior to a successful suicide attempt; however, proteomic studies are scarce. Thus, we performed a DIGE proteomic analysis of post mortem tissue samples from the prefrontal cortex and amygdala of suicide victims to identify protein changes and biomarker candidates of suicide. Among our matched spots we found 46 and 16 significant differences in the prefrontal cortex and amygdala, respectively; by using the industry standard t test and 1.3 fold change as cut off for significance. Because of the risk of false discoveries (FDR) in these data, we also made FDR adjustment by calculating the q-values for all the t tests performed and by using 0.06 and 0.4 as alpha thresholds we reduced the number of significant spots to 27 and 9 respectively. From these we identified 59 proteins in the cortex and 11 proteins in the amygdala. These proteins are related to biological functions and structures such as metabolism, the redox system, the cytoskeleton, synaptic function, and proteolysis. Thirteen of these proteins (CBR1, DPYSL2, EFHD2, FKBP4, GFAP, GLUL, HSPA8, NEFL, NEFM, PGAM1, PRDX6, SELENBP1 and VIM,) have already been suggested to be biomarkers of psychiatric disorders at protein or genome level. We also pointed out 9 proteins that changed in both the amygdala and the cortex, and from these, GFAP, INA, NEFL, NEFM and TUBA1 are interacting cytoskeletal proteins that have a functional connection to glutamate, GABA, and serotonin receptors. Moreover, ACTB, CTSD and GFAP displayed opposite changes in the two examined brain structures that might be a suitable characteristic for brain imaging studies. The opposite changes of ACTB, CTSD and GFAP in the two brain structures were validated by western blot analysis.


Assuntos
Tonsila do Cerebelo/metabolismo , Córtex Pré-Frontal/metabolismo , Suicídio , Adulto , Idoso , Autopsia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Mapeamento Encefálico/métodos , Citoesqueleto/metabolismo , Bases de Dados Factuais , Reações Falso-Positivas , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Peptídeos/química , Isoformas de Proteínas , Proteômica/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA