Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 625(7996): 673-678, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38267680

RESUMO

Quantum electrodynamics (QED), the quantum field theory that describes the interaction between light and matter, is commonly regarded as the best-tested quantum theory in modern physics. However, this claim is mostly based on extremely precise studies performed in the domain of relatively low field strengths and light atoms and ions1-6. In the realm of very strong electromagnetic fields such as in the heaviest highly charged ions (with nuclear charge Z ≫ 1), QED calculations enter a qualitatively different, non-perturbative regime. Yet, the corresponding experimental studies are very challenging, and theoretical predictions are only partially tested. Here we present an experiment sensitive to higher-order QED effects and electron-electron interactions in the high-Z regime. This is achieved by using a multi-reference method based on Doppler-tuned X-ray emission from stored relativistic uranium ions with different charge states. The energy of the 1s1/22p3/2 J = 2 → 1s1/22s1/2 J = 1 intrashell transition in the heaviest two-electron ion (U90+) is obtained with an accuracy of 37 ppm. Furthermore, a comparison of uranium ions with different numbers of bound electrons enables us to disentangle and to test separately the one-electron higher-order QED effects and the bound electron-electron interaction terms without the uncertainty related to the nuclear radius. Moreover, our experimental result can discriminate between several state-of-the-art theoretical approaches and provides an important benchmark for calculations in the strong-field domain.

2.
Phys Rev Lett ; 122(9): 092701, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932526

RESUMO

We report the first measurement of low-energy proton-capture cross sections of ^{124}Xe in a heavy-ion storage ring. ^{124}Xe^{54+} ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The ^{125}Cs reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.

3.
Phys Rev Lett ; 113(11): 113001, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25259973

RESUMO

The photoelectric effect has been studied in the regime of hard x rays and strong Coulomb fields via its time-reversed process of radiative recombination (RR). In the experiment, the relativistic electrons recombined into the 2p_{3/2} excited state of hydrogenlike uranium ions, and both the RR x rays and the subsequently emitted characteristic x rays were detected in coincidence. This allowed us to observe the coherence between the magnetic substates in a highly charged ion and to identify the contribution of the spin-orbit interaction to the RR process.

4.
Phys Rev Lett ; 110(21): 213201, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745869

RESUMO

The K shell excitation of H-like uranium (U(91+)) in relativistic collisions with different gaseous targets has been studied at the experimental storage ring at GSI Darmstadt. By performing measurements with different targets as well as with different collision energies, we were able to observe for the first time the effect of electron-impact excitation (EIE) process in the heaviest hydrogenlike ion. The large fine-structure splitting in H-like uranium allowed us to unambiguously resolve excitation into different L shell levels. State-of-the-art calculations performed within the relativistic framework which include excitation mechanisms due to both protons (nucleus) and electrons are in good agreement with the experimental findings. Moreover, our experimental data clearly demonstrate the importance of including the generalized Breit interaction in the treatment of the EIE process.

5.
Phys Rev Lett ; 104(3): 033001, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20366639

RESUMO

The spectral distribution of the 1s2s {1}S{0}-->1s{2} 1S0 two-photon decay of He-like tin was measured using a novel approach at the gas-jet target of the ESR storage ring. Relativistic collisions of Li-like projectiles with low-density gaseous matter have been exploited to selectively populate the desired 1s2s state. Compared to conventional techniques, this approach results in a substantial gain in statistical and systematic accuracy, which allowed us to achieve for the first time a sensitivity to relativistic effects on the two-photon decay spectral shape as well as to discriminate the measured spectrum for Sn from theoretical shapes for different elements along the He-isoelectronic sequence.

6.
Rev Sci Instrum ; 85(5): 053513, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24880375

RESUMO

Although different ion-atom collisions have been studied in various contexts, precise values of cross-sections for many atomic processes were seldom obtained. One of the main uncertainties originates from the value of target densities. In this paper, we describe a unique method to measure a target density precisely with a combination of physical vapor deposition and inductively coupled plasma optical emission spectrometry. This method is preliminarily applied to a charge transfer cross-section measurement in collisions between highly charged ions and magnesium vapor. The final relative uncertainty of the target density is less than 2.5%. This enables the precise studies of atomic processes in ion-atom collisions, even though in the trial test the deduction of precise capture cross-sections was limited by other systematic errors.

7.
Rev Sci Instrum ; 81(3): 033303, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20370166

RESUMO

We have performed a systematic study of the bremsstrahlung emission from the electrons in the plasma of a commercial 14.5 GHz electron-cyclotron resonance ion source. The electronic spectral temperature and the product of ionic and electronic densities of the plasma are measured by analyzing the bremsstrahlung spectra recorded for several rare gases (Ar, Kr, and Xe) as a function of the injected power. Within our uncertainty, we find an average temperature of approximately 48 keV above 100 W, with a weak dependency on the injected power and gas composition. Charge state distributions of extracted ion beams have been determined as well, providing a way to disentangle the ionic density from the electronic density. Moreover x-ray emission from highly charged argon ions in the plasma has been observed with a high-resolution mosaic-crystal spectrometer, demonstrating the feasibility for high-precision measurements of transition energies of highly charged ions, in particular, of the magnetic dipole (M1) transition of He-like of argon ions.

8.
Phys Rev Lett ; 100(7): 073201, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18352547

RESUMO

Isotope shifts in dielectronic recombination spectra were studied for Li-like (A)Nd(57+) ions with A=142 and A=150. From the displacement of resonance positions energy shifts deltaE(142 150)(2s-2p(1/2))=40.2(3)(6) meV [(stat)(sys)] and deltaE(142 150)(2s-2p(3/2))=42.3(12)(20) meV of 2s-2p(j) transitions were deduced. An evaluation of these values within a full QED treatment yields a change in the mean-square charge radius of (142 150)deltar(2)=-1.36(1)(3) fm(2). The approach is conceptually new and combines the advantage of a simple atomic structure with high sensitivity to nuclear size.

9.
Phys Rev Lett ; 99(16): 163201, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17995248

RESUMO

We have measured the continuum momentum distribution for radiative electron capture to the continuum (RECC) cusp electrons in 90A MeV U88+ + N2-->U88+ + N2 +* + ecusp(0 degrees ) + hnu (RECC) collisions. We demonstrate that x rays coincident with RECC cusp electrons originate from the short-wavelength limit of the electron-nucleus bremsstrahlung and explain the asymmetric cusp shape by comparison with theory within the relativistic impulse approximation.

10.
Phys Rev Lett ; 97(22): 223202, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17155800

RESUMO

For radiative electron capture into the K shell of bare uranium ions, a study of the polarization properties has been performed. For this purpose a position sensitive germanium detector has been used as an efficient Compton polarimeter. This enabled us to measure the degree of linear polarization by analyzing Compton scattering inside the detector and to determine the orientation of the polarization plane. Depending on the observation angle and the beam energy used, the radiation is found to be linearly polarized by up to 80%. In all cases studied, the plane of polarization coincides with the collision plane. The results will be discussed in the context of rigorous relativistic calculations, showing that relativistic effects tend to lead to a depolarization of the radiation emitted.

11.
Phys Rev Lett ; 94(22): 223001, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-16090386

RESUMO

X-ray spectra following radiative recombination of free electrons with bare uranium ions (U92+) were measured at the electron cooler of the ESR storage ring. The most intense lines observed in the spectra can be attributed to the characteristic Lyman ground-state transitions and to the recombination of free electrons into the K shell of the ions. Our experiment was carried out by utilizing the deceleration technique which leads to a considerable reduction of the uncertainties associated with Doppler corrections. This, in combination with the 0 degree observation geometry, allowed us to determine the ground-state Lamb shift in hydrogenlike uranium (U91+) from the observed x-ray lines with an accuracy of 1%. The present result is about 3 times more precise than the most accurate value available up to now and provides the most stringent test of bound-state quantum electrodynamics for one-electron systems in the strong-field regime.

12.
Phys Rev Lett ; 88(15): 153001, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11955194

RESUMO

For the Lyman- alpha(1) transition (2p(3/2)-->1s(1/2)) in hydrogenlike ions an interference between the leading E1 decay channel and the much weaker M2 multipole transition gives rise to a remarkable modified angular distribution of the emitted photons from aligned ions. This effect is most pronounced for the heaviest elements but results in a still sizable correction for medium- Z ions. For the particular case of hydrogenlike uranium where the angular distribution of the Lyman- alpha(1) x rays following radiative electron capture has been measured, the former variance with theoretical findings is removed when this E1-M2 interference is taken into account.

13.
Phys Rev Lett ; 92(20): 203004, 2004 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15169349

RESUMO

Radiative recombination transitions into the ground state of cooled bare and hydrogenlike uranium ions were measured at the storage ring ESR. By comparing the corresponding x-ray centroid energies, this technique allows for a direct measurement of the electron-electron contribution to the ionization potential in the heaviest He-like ions. For the two-electron contribution to the ionization potential of He-like uranium we obtain a value of 2248+/-9 eV. This represents the most accurate determination of two-electron effects in the domain of high-Z He-like ions, and the accuracy reaches already the size of the specific two-electron radiative QED corrections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA