Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Zoo Wildl Med ; 52(4): 1113-1122, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34998280

RESUMO

The lack of species-specific assays for the diagnosis of infectious diseases, such as bovine tuberculosis, poses a threat to the management of wildlife populations, especially for vulnerable species such as cheetah (Acinonyx jubatus). The aim of this study was to identify and develop a cell-mediated immunological cytokine-release assay that could distinguish between Mycobacterium bovis-infected and uninfected cheetahs using commercially available feline cytokine ELISA and domestic cat (Felis catus) recombinant proteins. Antibodies against domestic cat cytokines, tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1ß), and interferon gamma (IFN-γ), were screened for cross-reactivity with plasma cytokines from cheetah whole blood stimulated using QuantiFERON®-TB Gold Plus (QFT) tubes. Evidence of cytokine production in response to QFT mitogen stimulation was observed in all four ELISA assays. However only the Mabtech Cat IFN-γ ELISABasic kit could distinguish between M. bovis-infected (n = 1) and uninfected (n = 1) cheetahs and was therefore selected for further evaluation. A preliminary cheetah specific cutoff value (11 pg/ml) for detecting M. bovis infection using the Mabtech Cat IFN-γ release assay was calculated using a M. bovis uninfected cheetah cohort. Although this study only included one confirmed M. bovis culture-positive and one M. bovis culture-negative cheetah, the Mabtech Cat IFN-γ release assay demonstrated its potential for diagnostic application in this species.


Assuntos
Acinonyx , Doenças do Gato , Mycobacterium bovis , Tuberculose , Animais , Gatos , Citocinas , Testes de Liberação de Interferon-gama/veterinária , Tuberculose/diagnóstico , Tuberculose/veterinária
2.
Emerg Infect Dis ; 26(3): 630-631, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32091381

RESUMO

In South Africa, bovine tuberculosis threatens some of Africa's most iconic wildlife species, including the cheetah (Acinonyx jubatus). The lack of antemortem diagnostic tests for this species strongly hinders conservation efforts. We report use of antemortem and postmortem diagnostic assays to detect Mycobacterium bovis infection in a cheetah.


Assuntos
Acinonyx , Mycobacterium bovis , Tuberculose/veterinária , Animais , Imunoensaio/veterinária , Reação em Cadeia da Polimerase/veterinária , África do Sul , Tuberculose/diagnóstico , Tuberculose/patologia
3.
Sci Rep ; 14(1): 14768, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926469

RESUMO

Hypervariable region sequencing of the 16S ribosomal RNA (rRNA) gene plays a critical role in microbial ecology by offering insights into bacterial communities within specific niches. While providing valuable genus-level information, its reliance on data from targeted genetic regions limits its overall utility. Recent advances in sequencing technologies have enabled characterisation of the full-length 16S rRNA gene, enhancing species-level classification. Although current short-read platforms are cost-effective and precise, they lack full-length 16S rRNA amplicon sequencing capability. This study aimed to evaluate the feasibility of a modified 150 bp paired-end full-length 16S rRNA amplicon short-read sequencing technique on the Illumina iSeq 100 and 16S rRNA amplicon assembly workflow by utilising a standard mock microbial community and subsequently performing exploratory characterisation of captive (zoo) and free-ranging African elephant (Loxodonta africana) respiratory microbiota. Our findings demonstrate that, despite generating assembled amplicons averaging 869 bp in length, this sequencing technique provides taxonomic assignments consistent with the theoretical composition of the mock community and respiratory microbiota of other mammals. Tentative bacterial signatures, potentially representing distinct respiratory tract compartments (trunk and lower respiratory tract) were visually identified, necessitating further investigation to gain deeper insights into their implication for elephant physiology and health.


Assuntos
Bactérias , Elefantes , Microbiota , RNA Ribossômico 16S , Animais , Elefantes/microbiologia , Elefantes/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Microbiota/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sistema Respiratório/microbiologia , Animais de Zoológico/microbiologia , Análise de Sequência de DNA/métodos , Animais Selvagens/microbiologia , Filogenia
4.
Front Immunol ; 14: 1216262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727792

RESUMO

Background: Mycobacterium bovis (M. bovis) is the causative agent of animal tuberculosis (TB) which poses a threat to many of South Africa's most iconic wildlife species, including leopards (Panthera pardus). Due to limited tests for wildlife, the development of accurate ante-mortem tests for TB diagnosis in African big cat populations is urgently required. The aim of this study was to evaluate currently available immunological assays for their ability to detect M. bovis infection in leopards. Methods: Leopard whole blood (n=19) was stimulated using the QuantiFERON Gold Plus In-Tube System (QFT) to evaluate cytokine gene expression and protein production, along with serological assays. The GeneXpert® MTB/RIF Ultra (GXU®) qPCR assay, mycobacterial culture, and speciation by genomic regions of difference PCR, was used to confirm M. bovis infection in leopards. Results: Mycobacterium bovis infection was confirmed in six leopards and individuals that were tuberculin skin test (TST) negative were used for comparison. The GXU® assay was positive using all available tissue homogenates (n=5) from M. bovis culture positive animals. Mycobacterium bovis culture-confirmed leopards had greater antigen-specific responses, in the QFT interferon gamma release assay, CXCL9 and CXCL10 gene expression assays, compared to TST-negative individuals. One M. bovis culture-confirmed leopard had detectable antibodies using the DPP® Vet TB assay. Conclusion: Preliminary results demonstrated that immunoassays and TST may be potential tools to identify M. bovis-infected leopards. The GXU® assay provided rapid direct detection of infected leopards. Further studies should aim to improve TB diagnosis in wild felids, which will facilitate disease surveillance and screening.


Assuntos
Infecções por Mycobacterium , Mycobacterium bovis , Panthera , Animais , Gatos , Animais Selvagens , Anticorpos
5.
Pathogens ; 11(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35890010

RESUMO

Mycobacterium bovis (M. bovis) infection in wildlife, including lions (Panthera leo), has implications for individual and population health. Tools for the detection of infected lions are needed for diagnosis and disease surveillance. This study aimed to evaluate the Mabtech Cat interferon gamma (IFN-γ) ELISABasic kit for detection of native lion IFN-γ in whole blood samples stimulated using the QuantiFERON® TB Gold Plus (QFT) platform as a potential diagnostic assay. The ELISA was able to detect lion IFN-γ in mitogen-stimulated samples, with good parallelism, linearity, and a working range of 15.6-500 pg/mL. Minimal matrix interference was observed in the recovery of domestic cat rIFN-γ in lion plasma. Both intra- and inter-assay reproducibility had a coefficient of variation less than 10%, while the limit of detection and quantification were 7.8 pg/mL and 31.2 pg/mL, respectively. The diagnostic performance of the QFT Mabtech Cat interferon gamma release assay (IGRA) was determined using mycobacterial antigen-stimulated samples from M. bovis culture-confirmed infected (n = 8) and uninfected (n = 4) lions. A lion-specific cut-off value (33 pg/mL) was calculated, and the sensitivity and specificity were determined to be 87.5% and 100%, respectively. Although additional samples should be tested, the QFT Mabtech Cat IGRA could identify M. bovis-infected African lions.

6.
Transbound Emerg Dis ; 69(2): 378-384, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33423384

RESUMO

Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis) infection, is a multi-host disease which negatively affects the wildlife industry, with adverse consequences for conservation, ecotourism, and game/wildlife sales. Although interspecies transmission has been reported between some wildlife hosts, the risk of spread in complex ecosystems is largely unknown. As a controlled disease, tools for accurate detection of M. bovis infection are crucial for effective surveillance and management, especially in wildlife populations. There are, however, limited species-specific diagnostic tests available for wildlife. Hippopotamuses are rarely tested for M. bovis infection, and infection has not previously been confirmed in these species. In this study, blood and tissue samples collected from common hippopotamus (Hippopotamus amphibius) residing in a bTB-endemic area, the Greater Kruger Protected area (GKPA), were retrospectively screened to determine whether there was evidence for interspecies transmission of M. bovis, and identify tools for M. bovis detection in this species. Using the multi-species DPP® VetTB serological assay, a bTB seroprevalence of 8% was found in hippopotamus from GKPA. In addition, the first confirmed case of M. bovis infection in a free-ranging common hippopotamus is reported, based on the isolation in mycobacterial culture, genetic speciation and detection of DNA in tissue samples. Importantly, the M. bovis spoligotype (SB0121) isolated from this common hippopotamus is shared with other M. bovis-infected hosts in GKPA, suggesting interspecies transmission. These results support the hypothesis that M. bovis infection may be under recognized in hippopotamus. Further investigation is needed to determine the risk of interspecies transmission of M. bovis to common hippopotamus in bTB-endemic ecosystems and evaluate serological and other diagnostic tools in this species.


Assuntos
Artiodáctilos , Doenças dos Bovinos , Mycobacterium bovis , Tuberculose Bovina , Tuberculose , Animais , Bovinos , Ecossistema , Mycobacterium bovis/genética , Estudos Retrospectivos , Estudos Soroepidemiológicos , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Tuberculose/veterinária
7.
Front Cell Infect Microbiol ; 12: 989209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189358

RESUMO

Mycobacterium bovis (M. bovis) infection has been identified in both domestic and wild animals and may threaten the conservation of vulnerable species including African lions (Panthera leo). There is a need to develop accurate ante-mortem tools for detection of M. bovis infection in African big cat populations for wildlife management and disease surveillance. The aim of this study was to compare the performances of two immunological assays, the QuantiFERON®-TB Gold Plus (QFT) Mabtech Cat interferon gamma release assay (IGRA) and QFT CXCL9 gene expression assay (GEA), which have both shown diagnostic potential for M. bovis detection in African lions. Lion whole blood (n=47), stimulated using the QFT platform, was used for measuring antigen-specific CXCL9 expression and IFN-γ production and to assign M. bovis infection status. A subset (n=12) of mycobacterial culture-confirmed M. bovis infected and uninfected African lions was used to compare the agreement between the immunological diagnostic assays. There was no statistical difference between the proportions of test positive African lions tested by the QFT Mabtech Cat IGRA compared to the QFT CXCL9 GEA. There was also a moderate association between immunological diagnostic assays when numerical results were compared. The majority of lions had the same diagnostic outcome using the paired assays. Although the QFT Mabtech Cat IGRA provides a more standardized, commercially available, and cost-effective test compared to QFT CXCL9 GEA, using both assays to categorize M. bovis infection status in lions will increase confidence in results.


Assuntos
Leões , Mycobacterium bovis , Tuberculose , Animais , Animais Selvagens , Gatos , Expressão Gênica , Testes de Liberação de Interferon-gama , Leões/microbiologia , Mycobacterium bovis/genética , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Tuberculose/veterinária
8.
Front Vet Sci ; 8: 588697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33585615

RESUMO

Wildlife tuberculosis is a major economic and conservation concern globally. Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), is the most common form of wildlife tuberculosis. In South Africa, to date, M. bovis infection has been detected in 24 mammalian wildlife species. The identification of M. bovis infection in wildlife species is essential to limit the spread and to control the disease in these populations, sympatric wildlife species and neighboring livestock. The detection of M. bovis-infected individuals is challenging as only severely diseased animals show clinical disease manifestations and diagnostic tools to identify infection are limited. The emergence of novel reagents and technologies to identify M. bovis infection in wildlife species are instrumental in improving the diagnosis and control of bTB. This review provides an update on the diagnostic tools to detect M. bovis infection in South African wildlife but may be a useful guide for other wildlife species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA