Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Anim Ecol ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39219166

RESUMO

Population dynamic and eco-evolutionary responses to environmental variation and change fundamentally depend on combinations of within- and among-cohort variation in the phenotypic expression of key life-history traits, and on corresponding variation in selection on those traits. Specifically, in partially migratory populations, spatio-seasonal dynamics depend on the degree of adaptive phenotypic expression of seasonal migration versus residence, where more individuals migrate when selection favours migration. Opportunity for adaptive (or, conversely, maladaptive) expression could be particularly substantial in early life, through the initial development of migration versus residence. However, within- and among-cohort dynamics of early-life migration, and of associated survival selection, have not been quantified in any system, preventing any inference on adaptive early-life expression. Such analyses have been precluded because data on seasonal movements and survival of sufficient young individuals, across multiple cohorts, have not been collected. We undertook extensive year-round field resightings of 9359 colour-ringed juvenile European shags Gulosus aristotelis from 11 successive cohorts in a partially migratory population. We fitted Bayesian multi-state capture-mark-recapture models to quantify early-life variation in migration versus residence and associated survival across short temporal occasions through each cohort's first year from fledging, thereby quantifying the degree of adaptive phenotypic expression of migration within and across years. All cohorts were substantially partially migratory, but the degree and timing of migration varied considerably within and among cohorts. Episodes of strong survival selection on migration versus residence occurred both on short timeframes within years, and cumulatively across entire first years, generating instances of instantaneous and cumulative net selection that would be obscured at coarser temporal resolutions. Further, the magnitude and direction of selection varied among years, generating strong fluctuating survival selection on early-life migration across cohorts, as rarely evidenced in nature. Yet, the degree of migration did not strongly covary with the direction of selection, indicating limited early-life adaptive phenotypic expression. These results reveal how dynamic early-life expression of and selection on a key life-history trait, seasonal migration, can emerge across seasonal, annual, and multi-year timeframes, yet be substantially decoupled. This restricts the potential for adaptive phenotypic, microevolutionary, and population dynamic responses to changing seasonal environments.

2.
Am Nat ; 201(2): 269-286, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724470

RESUMO

AbstractPopulation responses to environmental variation ultimately depend on within-individual and among-individual variation in labile phenotypic traits that affect fitness and resulting episodes of selection. Yet complex patterns of individual phenotypic variation arising within and between time periods, as well as associated variation in selection, have not been fully conceptualized or quantified. We highlight how structured patterns of phenotypic variation in dichotomous threshold traits can theoretically arise and experience varying forms of selection, shaping overall phenotypic dynamics. We then fit novel multistate models to 10 years of band-resighting data from European shags to quantify phenotypic variation and selection in a key threshold trait underlying spatioseasonal population dynamics: seasonal migration versus residence. First, we demonstrate substantial among-individual variation alongside substantial between-year individual repeatability in within-year phenotypic variation ("flexibility"), with weak sexual dimorphism. Second, we demonstrate that between-year individual variation in within-year phenotypes ("supraflexibility") is structured and directional, consistent with the threshold trait model. Third, we demonstrate strong survival selection on within-year phenotypes-and hence on flexibility-that varies across years and sexes, including episodes of disruptive selection representing costs of flexibility. By quantitatively combining these results, we show how supraflexibility and survival selection on migratory flexibility jointly shape population-wide phenotypic dynamics of seasonal movement.


Assuntos
Migração Animal , Aves , Animais , Estações do Ano , Migração Animal/fisiologia , Dinâmica Populacional , Aves/fisiologia , Fenótipo , Seleção Genética
3.
J Anim Ecol ; 92(8): 1622-1638, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37212614

RESUMO

Climate warming can reduce food resources for animal populations. In species exhibiting parental care, parental effort is a 'barometer' of changes in environmental conditions. A key issue is the extent to which variation in parental effort can buffer demographic rates against environmental change. Seabirds breed in large, dense colonies and globally are major predators of small fish that are often sensitive to ocean warming. We explored the causes and consequences of annual variation in parental effort as indicated by standardised checks of the proportions of chicks attended by both, one or neither parent, in a population of common guillemots Uria aalge over four decades during which there was marked variation in marine climate and chick diet. We predicted that, for parental effort to be an effective buffer, there would be a link between environmental conditions and parental effort, but not between parental effort and demographic rates. Environmental conditions influenced multiple aspects of the prey delivered by parents to their chicks with prey species, length and energy density all influenced by spring sea surface temperature (sSST) in the current and/or previous year. Overall, the mean annual daily energy intake of chicks declined significantly when sSST in the current year was higher. In accordance with our first prediction, we found that parental effort increased with sSST in the current and previous year. However, the increase was insufficient to maintain chick daily energy intake. In contrast to our second prediction, we found that increased parental effort had major demographic consequences such that growth rate and fledging success of chicks, and body mass and overwinter survival of breeding adults all decreased significantly. Common guillemot parents were unable to compensate effectively for temperature-mediated variation in feeding conditions through behavioural flexibility, resulting in immediate consequences for breeding population size because of lower adult survival and potentially longer-term impacts on recruitment because of lower productivity. These findings highlight that a critical issue for species' responses to future climate change will be the extent to which behavioural buffering can offer resilience to deteriorating environmental conditions.


Assuntos
Charadriiformes , Animais , Comportamento Alimentar/fisiologia , Peixes , Dieta , Densidade Demográfica
4.
Proc Biol Sci ; 288(1951): 20210404, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34004132

RESUMO

Quantifying temporal variation in sex-specific selection on key ecologically relevant traits, and quantifying how such variation arises through synergistic or opposing components of survival and reproductive selection, is central to understanding eco-evolutionary dynamics, but rarely achieved. Seasonal migration versus residence is one key trait that directly shapes spatio-seasonal population dynamics in spatially and temporally varying environments, but temporal dynamics of sex-specific selection have not been fully quantified. We fitted multi-event capture-recapture models to year-round ring resightings and breeding success data from partially migratory European shags (Phalacrocorax aristotelis) to quantify temporal variation in annual sex-specific selection on seasonal migration versus residence arising through adult survival, reproduction and the combination of both (i.e. annual fitness). We demonstrate episodes of strong and strongly fluctuating selection through annual fitness that were broadly synchronized across females and males. These overall fluctuations arose because strong reproductive selection against migration in several years contrasted with strong survival selection against residence in years with extreme climatic events. These results indicate how substantial phenotypic and genetic variation in migration versus residence could be maintained, and highlight that biologically important fluctuations in selection may not be detected unless both survival selection and reproductive selection are appropriately quantified and combined.


Assuntos
Migração Animal , Reprodução , Animais , Aves , Feminino , Masculino , Dinâmica Populacional , Estações do Ano , Seleção Genética
5.
J Anim Ecol ; 90(4): 796-808, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33340099

RESUMO

Elucidating the full eco-evolutionary consequences of climate change requires quantifying the impact of extreme climatic events (ECEs) on selective landscapes of key phenotypic traits that mediate responses to changing environments. Episodes of strong ECE-induced selection could directly alter population composition, and potentially drive micro-evolution. However, to date, few studies have quantified ECE-induced selection on key traits, meaning that immediate and longer-term eco-evolutionary implications cannot yet be considered. One widely expressed trait that allows individuals to respond to changing seasonal environments, and directly shapes spatio-seasonal population dynamics, is seasonal migration versus residence. Many populations show considerable among-individual phenotypic variation, resulting in 'partial migration'. However, variation in the magnitude of direct survival selection on migration versus residence has not been rigorously quantified, and empirical evidence of whether seasonal ECEs induce, intensify, weaken or reverse such selection is lacking. We designed full annual cycle multi-state capture-recapture models that allow estimation of seasonal survival probabilities of migrants and residents from spatio-temporally heterogeneous individual resightings. We fitted these models to 9 years of geographically extensive year-round resighting data from partially migratory European shags Phalacrocorax aristotelis. We thereby quantified seasonal and annual survival selection on migration versus residence across benign and historically extreme non-breeding season (winter) conditions, and tested whether selection differed between females and males. We show that two of four observed ECEs, defined as severe winter storms causing overall low survival, were associated with very strong seasonal survival selection against residence. These episodes dwarfed the weak selection or neutrality evident otherwise, and hence caused selection through overall annual survival. The ECE that caused highest overall mortality and strongest selection also caused sex-biased mortality, but there was little overall evidence of sex-biased selection on migration versus residence. Our results imply that seasonal ECEs and associated mortality can substantially shape the landscape of survival selection on migration versus residence. Such ECE-induced phenotypic selection will directly alter migrant and resident frequencies, and thereby alter immediate spatio-seasonal population dynamics. Given underlying additive genetic variation, such ECEs could potentially cause micro-evolutionary changes in seasonal migration, and thereby cause complex eco-evolutionary population responses to changing seasonal environments.


Assuntos
Aves , Mudança Climática , Migração Animal , Animais , Feminino , Fenótipo , Dinâmica Populacional , Estações do Ano
6.
J Therm Biol ; 97: 102777, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863421

RESUMO

Young birds in cold environments face a range of age-specific thermal challenges. Studying the thermal biology of young birds throughout ontogeny may further our understanding of how such challenges are met. We investigated how age and environmental parameters influenced surface temperature gradients across various body regions of wandering albatross (Diomedea exulans) chicks on Bird Island, South Georgia. This study was carried out over a 200 d period during the austral winter, from the end of the brood-guard period until fledging, bridging a gap in knowledge of surface temperature variation and heat loss in developing birds with a long nestling stage in severe climatic conditions. We found that variation in surface temperature gradients (i.e. the difference between surface and environmental temperature) was strongly influenced by chick age effects for insulated body regions (trunk), with an increase in the surface temperature gradient that followed the progression of plumage development, from the second set of down (mesoptiles), to final chick feathers (teleoptiles). Environmental conditions (primarily wind speed and relative humidity) had a stronger influence on the gradients in uninsulated areas (eye, bill) than insulated regions, which we interpret as a reflection of the relative degree of homeothermy exhibited by chicks of a given age. Based on biophysical modelling, total heat loss of chicks was estimated to increase linearly with age. However, mass specific heat loss decreased during the early stages of growth and then subsequently increased. This was attributed to age-related changes in feather growth and activity that increased surface temperature and, hence, metabolic heat loss. These results provide a foundation for further work on the effects of environmental stressors on developing chicks, which are key to understanding the physiological responses of animals to changes in climate in polar regions.


Assuntos
Aves/fisiologia , Temperatura Corporal , Plumas/fisiologia , Animais , Meio Ambiente , Feminino , Georgia , Masculino , Termografia
7.
Mov Ecol ; 12(1): 46, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872225

RESUMO

BACKGROUND: Fidelity to a given foraging location or route may be beneficial when environmental conditions are predictable but costly if conditions deteriorate or become unpredictable. Understanding the magnitude of fidelity displayed by different species and the processes that drive or erode it is therefore vital for understanding how fidelity may shape the demographic consequences of anthropogenic change. In particular, understanding the information that individuals may use to adjust their fidelity will facilitate improved predictions of how fidelity may change as environments change and the extent to which it will buffer individuals against such changes. METHODS: We used movement data collected during the breeding season across eight years for common guillemots, Atlantic puffins, razorbills, and black-legged kittiwakes breeding on the Isle of May, Scotland to understand: (1) whether foraging site/route fidelity occurred within and between years, (2) whether the degree of fidelity between trips was predicted by personal foraging effort, and (3) whether different individuals made more similar trips when they overlapped in time at the colony prior to departure and/or when out at sea suggesting the use of the same local environmental cues or information on the decisions made by con- and heterospecifics. RESULTS: All species exhibited site and route fidelity both within- and between-years, and fidelity between trips in guillemots and razorbills was related to metrics of foraging effort, suggesting they adjust fidelity to their personal foraging experience. We also found evidence that individuals used local environmental cues of prey location or availability and/or information gained by observing conspecifics when choosing foraging routes, particularly in puffins, where trips of individuals that overlapped temporally at the colony or out at sea were more similar. CONCLUSIONS: The fidelity shown by these seabird species has the potential to put them at greater risk in the face of environmental change by driving individuals to continue using areas being degraded by anthropogenic pressures. However, our results suggest that individuals show some flexibility in their fidelity, which may promote resilience under environmental change. The benefits of this flexibility are likely to depend on numerous factors, including the rapidity and spatial scale of environmental change and the reliability of the information individuals use to choose foraging sites or routes, thus highlighting the need to better understand how organisms combine cues, prior experience, and other sources of information to make movement decisions.

8.
Evolution ; 77(10): 2128-2143, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37343301

RESUMO

Dissecting joint micro-evolutionary and plastic responses to environmental perturbations requires quantifying interacting components of genetic and environmental variation underlying expression of key traits. This ambition is particularly challenging for phenotypically discrete traits where multiscale decompositions are required to reveal nonlinear transformations of underlying genetic and environmental variation into phenotypic variation, and when effects must be estimated from incomplete field observations. We devised a joint multistate capture-recapture and quantitative genetic animal model, and fitted this model to full-annual-cycle resighting data from partially-migratory European shags (${Gulosus~{}aristotelis}$) to estimate key components of genetic, environmental and phenotypic variance in the ecologically critical discrete trait of seasonal migration versus residence. We demonstrate non-negligible additive genetic variance in latent liability for migration, resulting in detectable micro-evolutionary responses following two episodes of strong survival selection. Further, liability-scale additive genetic effects interacted with substantial permanent individual and temporary environmental effects to generate complex nonadditive effects on expressed phenotypes, causing substantial intrinsic gene-by-environment interaction variance on the phenotypic scale. Our analyses therefore reveal how temporal dynamics of partial seasonal migration arise from combinations of instantaneous micro-evolution and within-individual phenotypic consistency, and highlight how intrinsic phenotypic plasticity could expose genetic variation underlying discrete traits to complex forms of selection.


Assuntos
Adaptação Fisiológica , Aves , Animais , Estações do Ano , Fenótipo , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA