Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nano Lett ; 23(4): 1273-1279, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36729943

RESUMO

Regulating the magnetic properties of multiferroics lays the foundation for their prospective application in spintronic devices. Single-phase multiferroics, such as rare-earth ferrites, are promising candidates; however, they typically exhibit weak magnetism at room temperature (RT). Here, we significantly boosted the RT ferromagnetism of a representative ferrite, EuFeO3, by oxygen defect engineering. Polarized neutron reflectometry and magnetometry measurements reveal that saturation magnetization reaches 0.04 µB/Fe, which is approximately 5 times higher than its bulk phase. Combining the annular bright-field images with theoretical assessment, we unravel the underlying mechanism for magnetic enhancement, in which the decrease in Fe-O-Fe bond angles caused by oxygen vacancies (VO) strengthens magnetic interactions and tilts Fe spins. Furthermore, the internal relationship between magnetism and VO was established by illustrating how the magnetic structure and magnitude change with VO configuration and concentration. Our strategy for regulating magnetic properties can be applied to numerous functional oxide materials.

2.
Small ; 19(43): e2304146, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37356048

RESUMO

The quantum phase transition caused by regulating the electronic correlation in strongly correlated quantum materials has been a research hotspot in condensed matter science. Herein, a photon-induced quantum phase transition from the Kondo-Mott insulating state to the low temperature metallic one accompanying with the magnetoresistance changing from negative to positive in the infinite-layer NdNiO2 films is reported, where the antiferromagnetic coupling among the Ni1+ localized spins and the Kondo effect are effectively suppressed by manipulating the correlation of Ni-3d and Nd-5d electrons under the photoirradiation. Moreover, the critical temperature Tc of the superconducting-like transition exhibits a dome-shaped evolution with the maximum up to ≈42 K, and the electrons dominate the transport process proved by the Hall effect measurements. These findings not only make the photoinduction a promising way to control the quantum phase transition by manipulating the electronic correlation in Mott-like insulators, but also shed some light on the possibility of the superconducting in electron-doped nickelates.

3.
Phys Rev Lett ; 131(24): 246801, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181148

RESUMO

Disordered ferroics hold great promise for next-generation magnetoelectric devices because their lack of symmetry constraints implies negligible hysteresis with low energy costs. However, the transition temperature and the magnitude of polarization and magnetization are still too low to meet application requirements. Here, taking the prototype perovskite of SrTiO_{3} as an instance, we realize a coexisting spin and dipole reentrant glass states in SrTiO_{3} homoepitaxial films via manipulation of local symmetry. Room-temperature saturation magnetization and spontaneous polarization reach ∼ 10 emu/cm^{3} and ∼ 25 µC/cm^{2}, respectively, with high transition temperatures (101 K and 236 K for spin and dipole glass temperatures and 556 K and 1100 K for Curie temperatures, respectively). Our atomic-scale investigation points out an underlying mechanism, where the Ti/O-defective unit cells break the local translational and orbital symmetry to drive the formation of unusual slush states. This study advances our understanding of the nature of the intricate couplings of ferroic glasses. Our approach could be applied to numerous perovskite oxides for the simultaneous control of the local magnetic and polar orderings and for the exploration of the underlying physics.

4.
Nano Lett ; 22(22): 8983-8990, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36331193

RESUMO

Protonation can be used to tune diverse physical and chemical properties of functional oxides. Although protonation of nickelate perovskites has been reported, details on the crystal structure of the protonated phase and a quantitative understanding of the effect of protons on physical properties are still lacking. Therefore, in this work, we select NdNiO3 (NNO) as a model system to understand the protonation process from pristine NNO to protonated HxNdNiO3 (H-NNO). We used a reliable electrochemical method with well-defined reference electrode to trigger the protonation-induced phase transition. We found that the protonated H-NNO phase showed a colossal ∼13% lattice expansion caused by a large tilt of NiO6 octahedra and displacement of Nd cations. Importantly, we further designed a novel device configuration to induce a gradient of proton concentration into a single NNO thin film to establish a quantitative correlation between the proton concentration and the lattice constant and transport property of H-NNO.

5.
Phys Rev Lett ; 128(1): 017202, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35061447

RESUMO

Heterointerfaces have led to the discovery of novel electronic and magnetic states because of their strongly entangled electronic degrees of freedom. Single-phase chromium compounds always exhibit antiferromagnetism following the prediction of the Goodenough-Kanamori rules. So far, exchange coupling between chromium ions via heteroanions has not been explored and the associated quantum states are unknown. Here, we report the successful epitaxial synthesis and characterization of chromium oxide (Cr_{2}O_{3})-chromium nitride (CrN) superlattices. Room-temperature ferromagnetic spin ordering is achieved at the interfaces between these two antiferromagnets, and the magnitude of the effect decays with increasing layer thickness. First-principles calculations indicate that robust ferromagnetic spin interaction between Cr^{3+} ions via anion-hybridization across the interface yields the lowest total energy. This work opens the door to fundamental understanding of the unexpected and exceptional properties of oxide-nitride interfaces and provides access to hidden phases at low-dimensional quantum heterostructures.

6.
Nano Lett ; 21(24): 10507-10515, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34870440

RESUMO

Orientation control of the oxygen vacancy channel (OVC) is highly desirable for tailoring oxygen diffusion as it serves as a fast transport channel in ion conductors, which is widely exploited in solid-state fuel cells, catalysts, and ion-batteries. Direct observation of oxygen-ion hopping toward preferential vacant sites is a key to clarifying migration pathways. Here we report anisotropic oxygen-ion migration mediated by strain in ultrathin cobaltites via in situ thermal activation in atomic-resolved transmission electron microscopy. Oxygen migration pathways are constructed on the basis of the atomic structure during the OVC switching, which is manifested as the vertical-to-horizontal OVC switching under tensile strain but the horizontal-to-diagonal switching under compression. We evaluate the topotactic structural changes to the OVC, determine the crucial role of the tolerance factor for OVC stability, and establish the strain-dependent phase diagram. Our work provides a practical guide for engineering OVC orientation that is applicable to ionic-oxide electronics.

7.
Nano Lett ; 21(7): 3146-3154, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33750141

RESUMO

Manipulation of octahedral distortion at atomic scale is an effective means to tune the ground states of functional oxides. Previous work demonstrates that strain and film thickness are variable parameters to modify the octahedral parameters. However, selective control of bonding geometry by structural propagation from adjacent layers is rarely studied. Here we propose a new route to tune the ferromagnetism in SrRuO3 (SRO) ultrathin layers by oxygen coordination of adjacent SrCuO2 (SCO) layers. The infinite-layered CuO2 exhibits a structural transformation from "planar-type" to "chain-type" with reduced film thickness. Two orientations dramatically modify the polyhedral connectivity at the interface, thus altering the octahedral distortion of SRO. The local structural variation changes the spin state of Ru and orbital hybridization strength, leading to a significant change in the magnetoresistance and anomalous Hall resistivity. These findings could launch investigations into adaptive control of functionalities in quantum oxide heterostructures using oxygen coordination.

8.
Nano Lett ; 21(19): 8324-8331, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34546060

RESUMO

Rare earth nickelates including LaNiO3 are promising catalysts for water electrolysis to produce oxygen gas. Recent studies report that Fe substitution for Ni can significantly enhance the oxygen evolution reaction (OER) activity of LaNiO3. However, the role of Fe in increasing the activity remains ambiguous, with potential origins that are both structural and electronic in nature. On the basis of a series of epitaxial LaNi1-xFexO3 thin films synthesized by molecular beam epitaxy, we report that Fe substitution tunes the Ni oxidation state in LaNi1-xFexO3 and a volcano-like OER trend is observed, with x = 0.375 being the most active. Spectroscopy and ab initio modeling reveal that high-valent Fe3+δ cationic species strongly increase the transition-metal (TM) 3d bandwidth via Ni-O-Fe bridges and enhance TM 3d-O 2p hybridization, boosting the OER activity. These studies deepen our understanding of structural and electronic contributions that give rise to enhanced OER activity in perovskite oxides.

9.
Nano Lett ; 20(2): 1131-1140, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31978309

RESUMO

Strongly correlated perovskite oxides exhibit a plethera of intriguing phenomena and stimulate a great potential for multifunctional device applications. Utilizing tunable uniaxial strain, rather than biaxial or anisotropic strain, delivered from the crystallography of a single crystal substrate to modify the ground state of strongly correlated perovskite oxides has rarely been addressed for phase-space control. Here, we show that the physical properties of La2/3Ca1/3MnO3 (LCMO) films are remarkably different depending on the crystallographic orientations of the orthorhombic NdGaO3 (NGO) substrates. More importantly, the antiferromagnetic charge-ordered insulating (COI) phase induced in the (100) or (001)-oriented LCMO films can be dramatically promoted (or suppressed) by a uniaxial tensile (or compressive) bending stress along the in-plane [010] direction. By contrast, the COI phase is nearly unaffected along the other transverse in-plane directions. Results from scanning transmission electron microscopy reveal that the (100)- or (001)-oriented LCMO films are uniaxially tensile strained along the [010] direction, while the LCMO/NGO(010) and LCMO/NGO(110) films remaining as a bulklike ferromagnetic metallic state exhibit a different strain state. Density functional theory calculations further reveal that the cooperatively increased Jahn-Teller distortion and charge ordering may be indispensible for the inducing and promoting of the COI phase. These findings provide a path to understand the correlation between local and extended structural distortions imparted by coherent epitaxy and the electronic states for quantum phase engineering.

10.
Nano Lett ; 19(2): 1033-1038, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30673240

RESUMO

In classical morphotropic piezoelectric materials, rhombohedral and tetragonal phase variants can energetically compete to form a mixed phase regime with improved functional properties. While the discovery of morphotropic-like phases in multiferroic BiFeO3 films has broadened this definition, accessing these phase spaces is still typically accomplished through isovalent substitution or heteroepitaxial strain which do not allow for continuous modification of phase composition postsynthesis. Here, we show that it is possible to use low-energy helium implantation to tailor morphotropic phases of epitaxial BiFeO3 films postsynthesis in a continuous and iterative manner. Applying this strain doping approach to morphotropic films creates a new phase space based on internal and external lattice stress that can be seen as an analogue to temperature-composition phase diagrams of classical morphotropic ferroelectric systems.

11.
Phys Rev Lett ; 122(18): 187202, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144879

RESUMO

In the bulk, LaCoO_{3} (LCO) is a paramagnet, yet the low-temperature ferromagnetism (FM) is observed in tensile strained thin films, and its origin remains unresolved. Here, we quantitatively measured the distribution of atomic density and magnetization in LCO films by polarized neutron reflectometry (PNR) and found that the LCO layers near the heterointerfaces exhibit a reduced magnetization but an enhanced atomic density, whereas the film's interior (i.e., its film bulk) shows the opposite trend. We attribute the nonuniformity to the symmetry mismatch at the interface, which induces a structural distortion related to the ferroelasticity of LCO. This assertion is tested by systematic application of hydrostatic pressure during the PNR experiments. The magnetization can be controlled at a rate of -20.4% per GPa. These results provide unique insights into mechanisms driving FM in strained LCO films while offering a tantalizing observation that tunable deformation of the CoO_{6} octahedra in combination with the ferroelastic order parameter.

12.
Nano Lett ; 17(3): 1665-1669, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28146633

RESUMO

The ability to control magnetism of materials via electric field enables a myriad of technological innovations in information storage, sensing, and computing. We use ionic-liquid-assisted ferroelectric switching to demonstrate reversible modulation of interfacial magnetism in a multiferroic heterostructure composed of ferromagnetic (FM) La0.8Sr0.2MnO3 and ferroelectric (FE) PbZr0.2Ti0.8O3. It is shown that ionic liquids can be used to persistently and reversibly switch a large area of a FE film. This is a prerequisite for polarized neutron reflectometry (PNR) studies that are conducted to directly probe magnetoelectric coupling of the FE polarization to the interfacial magnetization.

13.
Nano Lett ; 17(6): 3334-3340, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28406308

RESUMO

We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a nonmonotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not only modify the magnitude of the spin Seebeck effect signal but in particular also alter its temperature dependence. By varying the temperature, we can select the dominating magnon mode and we analyze our results to reveal the mode selective interface transmission probabilities for different magnon modes and interfaces. The comparison of selected systems reveals semiquantitative details of the interfacial coupling depending on the materials involved, supported by the obtained field dependence of the signal.

14.
Phys Rev Lett ; 115(9): 096602, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26371671

RESUMO

We investigate the origin of the spin Seebeck effect in yttrium iron garnet (YIG) samples for film thicknesses from 20 nm to 50 µm at room temperature and 50 K. Our results reveal a characteristic increase of the longitudinal spin Seebeck effect amplitude with the thickness of the insulating ferrimagnetic YIG, which levels off at a critical thickness that increases with decreasing temperature. The observed behavior cannot be explained as an interface effect or by variations of the material parameters. Comparison to numerical simulations of thermal magnonic spin currents yields qualitative agreement for the thickness dependence resulting from the finite magnon propagation length. This allows us to trace the origin of the observed signals to genuine bulk magnonic spin currents due to the spin Seebeck effect ruling out an interface origin and allowing us to gauge the reach of thermally excited magnons in this system for different temperatures. At low temperature, even quantitative agreement with the simulations is found.

16.
Adv Sci (Weinh) ; : e2307571, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923859

RESUMO

The demand for low-dimensional ferroelectric devices is steadily increasing, however, the thick substrates in epitaxial films impede further size miniaturization. Freestanding films offer a potential solution by eliminating substrate constraints. Nevertheless, it remains an ongoing challenge to improve the stability in thin and fragile freestanding films under strain and temperature. In this work, the structure and ferroelectric order of freestanding PbTiO3 (PTO) films are investigated under continuous variation of the strain and temperature using nondestructive optical second harmonic generation (SHG) technique. The findings reveal that there are both out-of-plane and in-plane domains with polarization along out-of-plane and in-plane directions in the orthorhombic-like freestanding PTO films, respectively. In contrast, only out-of-plane domains are observed in the tetragonal epitaxial PTO films. Remarkably, the ferroelectricity of freestanding PTO films is strengthened under small uniaxial tensile strain from 0% up to 1.66% and well-maintained under larger biaxial tensile strain up to 2.76% along the [100] direction and up to 4.46% along the [010] direction. Moreover, a high Curie temperature of 630 K is identified in 50 nm thick freestanding PTO films by wide-temperature-range SHG. These findings provide valuable understanding for the development of the next-generation electronic nanodevices with flexibility and thermostability.

17.
Natl Sci Rev ; 11(7): nwae175, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38883296

RESUMO

Anisotropy is a significant and prevalent characteristic of materials, conferring orientation-dependent properties, meaning that the creation of original symmetry enables key functionality that is not found in nature. Even with the advancements in atomic machining, synthesis of separated symmetry in different directions within a single structure remains an extraordinary challenge. Here, we successfully fabricate NiS ultrafine nanorods with separated symmetry along two directions. The atomic structure of the nanorod exhibits rotational symmetry in the radial direction, while its axial direction is characterized by divergent translational symmetry, surpassing the conventional crystalline structures known to date. It does not fit the traditional description of the space group and the point group in three dimensions, so we define it as a new structure in which translational symmetry and rotational symmetry are separated. Further corroborating the atomic symmetric separation in the electronic structure, we observed the combination of stripe and vortex magnetic domains in a single nanorod with different directions, in accordance with the atomic structure. The manipulation of nanostructure at the atomic level introduces a novel approach to regulate new properties finely, leading to the proposal of new nanotechnology mechanisms.

18.
Science ; 383(6681): 388-394, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271502

RESUMO

Identifying a suitable water-soluble sacrificial layer is crucial to fabricating large-scale freestanding oxide membranes, which offer attractive functionalities and integrations with advanced semiconductor technologies. Here, we introduce a water-soluble sacrificial layer, "super-tetragonal" Sr4Al2O7 (SAOT). The low-symmetric crystal structure enables a superior capability to sustain epitaxial strain, allowing for broad tunability in lattice constants. The resultant structural coherency and defect-free interface in perovskite ABO3/SAOT heterostructures effectively restrain crack formation during the water release of freestanding oxide membranes. For a variety of nonferroelectric oxide membranes, the crack-free areas can span up to a millimeter in scale. This compelling feature, combined with the inherent high water solubility, makes SAOT a versatile and feasible sacrificial layer for producing high-quality freestanding oxide membranes, thereby boosting their potential for innovative device applications.

19.
Adv Mater ; 35(2): e2208221, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36300813

RESUMO

Interfacial magnetism stimulates the discovery of giant magnetoresistance (MR) and spin-orbital coupling across the heterointerfaces, facilitating the intimate correlation between spin transport and complex magnetic structures. Over decades, functional heterointerfaces composed of nitrides have seldom been explored due to the difficulty in synthesizing high-quality nitride films with correct compositions. Here, the fabrication of single-crystalline ferromagnetic Fe3 N thin films with precisely controlled thicknesses is reported. As film thickness decreases, the magnetization dramatically deteriorates, and the electronic state changes from metallic to insulating. Strikingly, the high-temperature ferromagnetism is maintained in a Fe3 N layer with a thickness down to 2 u.c. (≈8 Å). The MR exhibits a strong in-plane anisotropy; meanwhile, the anomalous Hall resistivity reverses its sign when the Fe3 N layer thickness exceeds 5 u.c. Furthermore, a sizable exchange bias is observed at the interfaces between a ferromagnetic Fe3 N and an antiferromagnetic CrN. The exchange bias field and saturation moment strongly depend on the controllable bending curvature using the cylinder diameter engineering technique, implying the tunable magnetic states under lattice deformation. This work provides a guideline for exploring functional nitride films and applying their interfacial phenomena for innovative perspectives toward practical applications.

20.
Adv Sci (Weinh) ; 10(19): e2205479, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37129311

RESUMO

Nitride perovskite LaWN3 has been predicted to be a promising ferroelectric material with unique properties for diverse applications. However, due to the challenging sample preparation at ambient pressure, the crystal structure of this nitride remains unsolved, which results in many ambiguities in its properties. Here, the authors report a comprehensive study of LaWN3 based on high-quality samples synthesized by a high-pressure method, leading to a definitive resolution of its crystal structure involving nitrogen deficiency. Combined with theoretical calculations, these results show that LaWN3 adopts an orthorhombic Pna21 structure with a polar symmetry, possessing a unique atomic polarization along the c-axis. The associated atomic polar distortions in LaWN3 are driven by covalent hybridization of W: 5d and N: 2p orbitals, opening a direct bandgap that explains its semiconducting behaviors. The structural stability and electronic properties of this nitride are also revealed to be closely associated with its nitrogen deficiency. The success in unraveling the structural and electronic ambiguities of LaWN3 would provide important insights into the structures and properties of the family of nitride perovskites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA