Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Photosynth Res ; 157(2-3): 85-101, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37212937

RESUMO

Photosynthetic responses across complex elevational gradients provides insight into fundamental processes driving responses of plant growth and net primary production to environmental change. Gas exchange of needles and twig water potential were measured in two widespread coniferous tree species, Pinus contorta and Picea engelmannii, over an 800-m elevation gradient in southeastern Wyoming, USA. We hypothesized that limitations to photosynthesis imposed by mesophyll conductance (gm) would be greatest at the highest elevation sites due to higher leaf mass per area (LMA) and that estimations of maximum rate of carboxylation (Vcmax) without including gm would obscure elevational patterns of photosynthetic capacity. We found that gm decreased with elevation for P. contorta and remained constant for P. engelmannii, but in general, limitation to photosynthesis by gm was small. Indeed, estimations of Vcmax when including gm were equivalent to those estimated without including gm and no correlation was found between gm and LMA nor between gm and leaf N. Stomatal conductance (gs) and biochemical demand for CO2 were by far the most limiting processes to photosynthesis at all sites along the elevation gradient. Photosynthetic capacity (A) and gs were influenced strongly by differences in soil water availability across the elevation transect, while gm was less responsive to water availability. Based on our analysis, variation in gm plays only a minor role in driving patterns of photosynthesis in P. contorta and P. engelmannii across complex elevational gradients in dry, continental environments of the Rocky Mountains and accurate modeling of photosynthesis, growth and net primary production in these forests may not require detailed estimation of this trait value.


Assuntos
Células do Mesofilo , Folhas de Planta , Células do Mesofilo/fisiologia , Folhas de Planta/fisiologia , Fotossíntese , Árvores/fisiologia , Água , Dióxido de Carbono
2.
Biol Lett ; 13(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052938

RESUMO

Mangroves in China are severely affected by the rapid invasion of the non-native species Spartina alterniflora Although many studies have addressed the possible impacts of S. alterniflora on the performance of mangrove seedlings, how excessive nitrogen (N) input due to eutrophication affects the interactions between mangrove species and S. alterniflora remains unknown. Here, we report the results from a mesocosm experiment using seedlings of the native mangrove species Kandelia obovata and the exotic S. alterniflora grown in monoculture and mixed culture under no nitrogen addition and nitrogen (N) addition treatments for 18 months. Without N addition, the presence of S. alterniflora inhibited the growth of K. obovata seedlings. Excessive N addition significantly increased the growth rate of K. obovata in both cultures. However, the positive and significantly increasing relative interaction intensity index under excessive N input suggested that the invasion of S. alterniflora could favour the growth of K. obovata under eutrophication conditions. Our results imply that excessive N input in southeastern China can increase the competitive ability of mangrove seedlings against invasive S. alterniflora.


Assuntos
Nitrogênio , Poaceae/crescimento & desenvolvimento , Rhizophoraceae/crescimento & desenvolvimento , China , Espécies Introduzidas , Nitrogênio/farmacologia , Poaceae/efeitos dos fármacos , Rhizophoraceae/efeitos dos fármacos , Água do Mar/química , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Áreas Alagadas
3.
PLoS One ; 11(1): e0146199, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26727205

RESUMO

Both plant invasion and nitrogen (N) enrichment should have significant impact on mangrove ecosystems in coastal regions around the world. However, how N2O efflux in mangrove wetlands responds to these environmental changes has not been well studied. Here, we conducted a mesocosm experiment with native mangrove species Kandelia obovata, invasive salt marsh species Spartina alterniflora, and their mixture in a simulated tide rotation system with or without nitrogen addition. In the treatments without N addition, the N2O effluxes were relatively low and there were no significant variations among the three vegetation types. A pulse loading of exogenous ammonium nitrogen increased N2O effluxes from soils but the stimulatory effect gradually diminished over time, suggesting that frequent measurements are necessary to accurately understand the behavior of N-induced response of N2O emissions. With the N addition, the N2O effluxes from the invasive S. alterniflora were lower than that from native K. obovata mesocosms. This result may be attributed to higher growth of S. alterniflora consuming most of the available nitrogen in soils, and thus inhibiting N2O production. We concluded that N loading significantly increased N2O effluxes, while the invasion of S. alterniflora reduced N2O effluxes response to N loading in this simulated mangrove ecosystem. Thus, both plant invasion and excessive N loading can co-regulate soil N2O emissions from mangrove wetlands, which should be considered when projecting future N2O effluxes from this type of coastal wetland.


Assuntos
Espécies Introduzidas , Nitrogênio/farmacologia , Óxido Nitroso/análise , Poaceae/fisiologia , Rhizophoraceae , Solo/química , Áreas Alagadas , China , Ciclo do Nitrogênio , Rhizophoraceae/metabolismo , Salinidade , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA