Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sheng Li Xue Bao ; 69(2): 172-182, 2017 Apr 25.
Artigo em Zh | MEDLINE | ID: mdl-28435976

RESUMO

The present study is designed to explore the role of plasma cells in the change of protein C system (PCS) in ulcerative colitis (UC). Dextran sulfate sodium (DSS, 4% in concentration) was used to induce mouse UC model. The plasma cells and the type of immune complex in colon were observed by immunofluorescence. The amount and type of plasma cells separated from colonic mucosal lamina propria were detected by flow cytometry using anti-CD54+CD38+ and IgA/M/G antibodies, respectively. After stimulation of macrophages by IgG type immune complex, TNF-α and IL-6 levels were evaluated by ELISA. After co-incubation of microvascular endothelial cells with TNF-α or IL-6, the expressions of endothelial protein C receptor (EPCR) and thrombomodulin (TM), and the activity of activated protein C (APC) were examined. As the results showed, the IgG type plasma cells infiltration and the quantity of IgG type immune complex were increased in DSS group in comparison with control group. After incubation with IgG type immune complex, the levels of TNF-α and IL-6 in the supernatant of macrophages were increased (P < 0.01) in a concentration-dependent manner. Meanwhile, after incubation with TNF-α or IL-6, the expressions of EPCR and TM in the microvascular endothelial cells were decreased (P < 0.05 or P < 0.01), while the activity of APC was reduced (P < 0.05 or P < 0.01). These results suggested that the quantity of IgG type plasma cells increases in UC and forms immune complexes, which affect the secretion of cytokines from macrophage, thereby affecting the function of endothelial cells and finally inhibiting PCS in UC. Therefore, plasma cell may be a novel target for the treatment of UC.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Colite Ulcerativa/imunologia , Imunoglobulina G/imunologia , Plasmócitos/imunologia , Proteína C/imunologia , Animais , Colite Ulcerativa/induzido quimicamente , Colo/citologia , Sulfato de Dextrana , Modelos Animais de Doenças , Interleucina-6/imunologia , Mucosa Intestinal/citologia , Macrófagos/imunologia , Camundongos , Receptores de Superfície Celular , Proteínas Recombinantes/imunologia , Fator de Necrose Tumoral alfa/imunologia
2.
Adv Clin Exp Med ; 28(8): 1101-1110, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31403266

RESUMO

BACKGROUND: Inhibition of the protein C system (PCS) might be one of the mechanisms of ulcerative colitis (UC). OBJECTIVES: The aim of the study was to explore the role of IgG plasma cells in changes in the PCS in UC. MATERIAL AND METHODS: Dextran sulfate sodium (DSS) was chosen to induce mouse UC. Inflammation was assessed using hematoxylin & eosin (H&E) staining and immunofluorescence. The profiling of colonic plasma cells and macrophages from colitis mice was analyzed with flow cytometry. After stimulation of macrophages with IgG type immune complex (IgG-IC), western blot was used to determine tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) protein levels. After co-incubation of colonic mucosa microvascular endothelial cells (MVECs) with TNF-α or IL-6, mitogen-activated protein kinase (MAPK) expression was detected. RESULTS: The DSS-colitis mice showed higher inflammatory indexes (p < 0.05 or p < 0.01), accompanied by greater infiltration of CD38+IgG+ plasma cells (p < 0.01), CD14+CD64+ macrophages (p < 0.01) and IgG-IC than healthy mice. Enhancement of TNF-α and IL-6 protein expression was demonstrated in this subset of macrophages when stimulated by IgG-IC (p < 0.01). After MVECs were incubated with TNF-α or IL-6, the expression of ß-arrestin1, pP38 MAPK and pJNK MAPK exhibited an increase (p < 0.05 or p < 0.01), but downregulation of endothelial protein C receptor (EPCR) expression was observed (p < 0.05 or p < 0.01); this inhibition of EPCR expression was reversed by SB203580, SP600125 or U0126 (p < 0.05 or p < 0.01). In addition, changes in activated protein C (APC) presented results similar to those for EPCR expression (p < 0.05 or p < 0.01). CONCLUSIONS: These results reveal that the PCS is inhibited during UC processing. There is a possibility that the interaction between IgG plasma cells and CD14+CD64+ macrophages, as well as further secretion of cytokines from CD14+CD64+ macrophages by the formation and stimulation of IgG-IC, subsequently influence MVECs through the ß-arrestin-MAPK pathway. Enhancement of PCS activity may represent a novel approach for treating UC.


Assuntos
Colite Ulcerativa , Ativação de Macrófagos , Proteína C , Animais , Colite Ulcerativa/imunologia , Colo , Células Endoteliais , Imunoglobulina G/fisiologia , Receptores de Lipopolissacarídeos , Camundongos , Plasmócitos , Proteína C/fisiologia , Receptores de IgG
3.
Adv Mater ; 25(14): 2040-4, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23427105

RESUMO

Hybrid nanoparticles (NPs) composed of multiple components offer new opportunities for next-generation materials. In this study, a paradigm for the noble metal/ternary complex oxide hybrid NPs is reported by adopting pulsed laser ablation in liquids. As model hybrids, gold-spinel heterodimer (Au-CoFe2O4) and gold-pervoskite heterodimer (Au-SrTiO3) NPs are investigated. This work has demonstrated the diverse playgroup of NP conjugation enlarged by complex oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA