Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Opt Express ; 32(1): 762-773, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175096

RESUMO

In this work, we investigate the bound states in the continuum (BICs) in a gold nanograting metal-insulator-metal metasurface structure at oblique angles of incidence. The nanograting metasurface consists of a gold nanograting patterned on a silicon dioxide dielectric film deposited on a thick gold film supported by a substrate. With rigorous full-wave finite difference time domain simulations, two bound states in the continuum are revealed upon transverse magnetic wave angular incidence. One BIC is formed by the interference between the surface plasmon polariton mode of the gold nanograting and the FP cavity mode. Another BIC mode is formed by the interference between the metal-dielectric hybrid structure guided mode resonance mode and the FP cavity mode. While true BIC modes cannot be observed, quasi-BIC modes are investigated at angles of incidence slightly off from the corresponding true BIC angles. It is shown that quasi-BIC modes can suppress radiation loss, resulting in narrow resonance spectral linewidths and high quality-factors. The quasi-BIC mode associated with the surface plasmon polariton mode is investigated for refractive index sensing. As a result, a high sensitivity refractive index sensor with a large figure-of-merit of 364 has been obtained.

2.
Opt Express ; 31(18): 29573-29588, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710754

RESUMO

In this work, we analyze the performance of finite-size metal-dielectric nanoslits guided mode resonance metasurface optical filters by using finite-difference time-domain simulations and spatial Fourier transform analysis. It is shown that in the direction of the nanoslits period, the critical size required to maintain the performance of the corresponding infinite size filter is the product of the nanoslits period and the quality factor of the infinite size filter. Size reduction in this dimension below the critical dimension reduces the peak transmittance and broadens the spectral linewidth of the filter. In the dimension orthogonal to the nanoslits period direction, the critical dimension size required is not related to the quality factor of the corresponding infinite size filter. Our analysis shows that the critical size is 12 times the filter peak wavelength in the orthogonal dimension for maintaining the filter performance. The 12 times filter wavelength requirement corresponds to the second zero of the Fourier transform of the aperture function.

3.
Opt Express ; 28(22): 32456-32467, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114931

RESUMO

In this work, we investigate a gold nanoslits array optical transmission filter with dual dielectric cap layers on top of the metal nanoslits. By integrating a low index of refraction dielectric layer between a high index of refraction dielectric cap layer and the gold nanoslits, a narrow spectral linewidth optical filter with a transmission peak far away from the Rayleigh anomaly wavelength is shown. Furthermore, we propose a figure-of-merit as the ratio of the spectral distance between a transmission peak and the Rayleigh anomaly over the spectral linewidth to characterize the performance of gold nanoslits optical filters. It is shown that dual dielectric cap gold nanoslits array optical filters have significantly larger figure-of-merits than that of traditional single dielectric cap gold nanoslits array optical filters.

4.
Appl Opt ; 58(24): 6700-6705, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31503603

RESUMO

Titanium nitride (TiN) is a metal-like refractory material that can be used as a substitution for metals in many applications. In this paper, we report the use of an ultra-thin TiN film in the Salisbury screen structure to spectral selectively absorb visible light for forming an optical color filter. The ultra-thin TiN film functions as a partial reflector as well as a protection capping layer in the structure. Spectral selective perfect absorption color filters with TiN-ZnO-Al multilayer films were fabricated and characterized.

5.
Opt Express ; 26(1): 496-504, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29328326

RESUMO

A metal-dielectric subwavelength grating structure was investigated for making single-peak narrow linewidth optical reflection filters in the near-infrared region. The subwavelength grating filter structure consists of a one-dimensional periodic array of metal (gold) and dielectric (Al2O3) elements on a dielectric substrate. Optimized reflection filters have a single reflection peak with ~10 nm linewidth in the infrared region over a wide spectral band. Finite-difference time-domain (FDTD) simulations and multipole analysis show that the narrow linewidth reflection is due to the coupling of the Rayleigh anomaly wave to the quadrupole plasmon resonance mode of the subwavelength metal-dielectric grating. Additionally, it was found that the contrast of the indices of refraction of two dielectric materials in the subwavelength structure is critical for realizing optical filter effect.

6.
Opt Lett ; 42(5): 955-958, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248340

RESUMO

A terahertz (THz) wire-grid polarizer with metallic bridges on a quartz substrate was simulated, fabricated, and tested. The device functions as a wide-band polarizer to incident THz radiation. In addition, the metallic bridges permit the device to function as a transparent electrode when a DC bias is applied to it. Three design variations of the polarizer with bridges and a polarizer without bridges were studied. Results show the devices with bridges have average s-polarization transmittance of less than -3 dB and average extinction ratios of approximately 40 dB across a frequency range of 220-990 GHz and thus are comparable to a polarizer without bridges.

7.
Opt Express ; 24(15): 17259-71, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27464175

RESUMO

A two-dimensional nanotrench cavity grating on a thick gold film was fabricated by using e-beam lithography. Optical reflection spectra from the fabricated device were measured at oblique angles of incidence for TE and TM polarizations. Near perfect light absorption was observed at different wavelengths for TE and TM polarizations at oblique angles of incidence. The peak absorption wavelength of TM polarization red-shifts significantly as angle of incidence increases. The peak absorption wavelength of TE polarization blue-shifts slightly as incident angle increases. Using finite-difference time-domain (FDTD) simulations, two orders of magnitude magnetic field enhancement was revealed inside nanotrenches, indicating strong light trapping inside the nanostructure. The fabricated device was investigated as a refractive index chemical sensor. It was found that sensitivity increases for TM polarization and decreases for TE polarization when angle of incidence increases from zero.

8.
Opt Express ; 24(22): A1431-A1443, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828527

RESUMO

Organic-inorganic perovskites were fabricated through a one-step procedure with different levels of hydration water in precursor solutions. The optical properties of CH3NH3PbI3 films were investigated through spectroscopic ellipsometry and photoluminescence measurements. With the measured optical constants, the efficiency limit of perovskite solar cells is predicted with a detailed balance model. By comparing the optical measurement to that of planar heterojunction solar cells, we conclude that the radiative efficiency and porosity of the perovskite film significantly influence the performance of perovskite solar cells. An optimized hydration-water concentration is obtained for the 3CH3NH3I:1PbAc2•xH2O precursor solution. The results can provide guidance for further optimization of the device performance of perovskite solar cells by utilizing hydration water.

9.
Opt Lett ; 40(2): 249-52, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25679856

RESUMO

Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.


Assuntos
Fótons , Análise Espectral/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Ouro , Nanotecnologia
10.
Sensors (Basel) ; 15(12): 29924-37, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26633402

RESUMO

A sensitive surface enhanced Raman scattering chemical sensor is demonstrated by using inexpensive gold-coated nanoporous anodic aluminum oxide substrates. To optimize the performance of the substrates for sensing by the Surface-enhanced Raman scattering (SERS) technique, the size of the nanopores is varied from 18 nm to 150 nm and the gold film thickness is varied from 30 nm to 120 nm. The sensitivity of gold-coated nanoporous surface enhanced Raman scattering sensor is characterized by detecting low concentrations of Rhodamine 6G laser dye molecules. The morphology of the SERS substrates is characterized by atomic force microscopy. Optical properties of the nanoporous SERS substrates including transmittance, reflectance, and absorbance are also investigated. Relative signal enhancement is plotted for a range of substrate parameters and a detection limit of 10(-6) M is established.

11.
Opt Express ; 22(25): 31545-54, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607104

RESUMO

Using two most abundant materials in nature: silicon and aluminum, spectral selective perfect light absorption in single layer silicon films on aluminum surface is demonstrated. Perfect light absorption is achieved due to the critical coupling of incident optical wave to the second order resonance mode of the optical cavity made of a thin silicon film on aluminum surface. Spectral selective perfect light absorption results in different optical colors corresponding to different thicknesses of silicon films. The device colors do not change when viewing from large angles with respect to the surface normal. Perfect absorption wavelength can be tuned over a wide wavelength range over 70 nm by thermal annealing. This new technology, which is low cost and compatible with silicon technology platform, paves the way for many applications such as optical color filters and wavelength selective photodetectors.

12.
J Hazard Mater ; 469: 134002, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503213

RESUMO

More than 4.5 billion tons of unconventional uranium resources [UO2(CO3)3]4- are uniformly dissolved in seawater, providing a sustainable and abundant fuel source for the development of nuclear energy. Herein, we presented a rational design and development of Ti3C2Tx nanocontainer inspired by the exceptional selectivity and affinity exhibited by superb-uranyl proteins through amino acid intercalation. The amino acid intercalation of Ti3C2Tx demonstrated exceptional UO22+ capture capacity (Arg-Ti3C2Tx, His-Ti3C2Tx, and Lys-Ti3C2Tx with qmax values of 594.46, 846.04, and 1030.17 mg/g). Furthermore, these intercalated materials exhibited remarkable sequestration efficiency and selectivity (Uinitial = ∼45.2 ∼7636 µg/L; ∼84.45% ∼98.08%; and ∼2.72 ×104 ∼1.28 ×105 KdU value), despite the presence of an overwhelming surplus of Na+, Ca2+, Mg2+, and Co2+ ions. Significantly, even in the 0.3 M NaHCO3 solution and surpassing 103-fold of the Na3VO4 system, the adsorption efficiency of Lys-Ti3C2Tx still achieved a remarkable 63.73% and 65.05%. Moreover, the Lys-Ti3C2Tx can extract ∼30.23 ∼8664.03 µg/g uranium after 24 h contact in ∼13.3 ∼5000 µg/L concentration from uranium-spiked natural seawater. The mechanism analysis revealed that the high binding capability can be attributed to the chelation of carboxyl and amino groups with uranyl ions. This innovative state-of-the-art approach in regulating uranium harvesting capability through intercalation of amino acid molecules provides novel insights for extracting uranium from seawater.

13.
Opt Express ; 21(26): 32491-500, 2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24514842

RESUMO

Resonance behaviors of the fundamental resonance mode of diabolo metal bar optical antennas are investigated by using finite-difference time-domain (FDTD) numerical simulations and a dipole oscillator model. It is found that as the waist of the diabolo metal bar optical antenna is reduced, optical energy absorption cross section and near field enhancement at resonance increase significantly. Also reduction of the diabolo waist width causes red-shift of the resonant wavelengths in the spectra of absorption cross-section, scattering cross-section, and the near electric field. A dipole oscillator model including the self-inductance force is used to fit the FDTD numerical simulation results. The dipole oscillator model characterizes well the resonance behaviors of narrow waist diabolo metal bar optical antennas.

14.
Opt Express ; 21(23): 27587-601, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514277

RESUMO

Mie-resonances in vertical, small aspect-ratio and subwavelength silicon nanopillars are investigated using visible bright-field µ-reflection measurements and Raman scattering. Pillar-to-pillar interactions were examined by comparing randomly to periodically arranged arrays with systematic variations in nanopillar diameter and array pitch. First- and second-order Mie resonances are observed in reflectance spectra as pronounced dips with minimum reflectances of several percent, suggesting an alternative approach to fabricating a perfect absorber. The resonant wavelengths shift approximately linearly with nanopillar diameter, which enables a simple empirical description of the resonance condition. In addition, resonances are also significantly affected by array density, with an overall oscillating blue shift as the pitch is reduced. Finite-element method and finite-difference time-domain simulations agree closely with experimental results and provide valuable insight into the nature of the dielectric resonance modes, including a surprisingly small influence of the substrate on resonance wavelength. To probe local fields within the Si nanopillars, µ-Raman scattering measurements were also conducted that confirm enhanced optical fields in the pillars when excited on-resonance.

15.
Opt Express ; 20(19): 21318-23, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037254

RESUMO

We investigate the surface plasmon resonance in super-period nanohole arrays and demonstrate a surface plasmon resonance spectrometer using a super-period metal nanohole array device. Super-period nanohole arrays are patterned metal nanohole array gratings. In a super-period nanohole array, there is a small subwavelength nanohole period that supports local surface plasmon resonance, and also a large grating period that diffracts surface plasmon radiations to non-zeroth order diffractions. With the super-period metal nanohole array, surface plasmon resonance can be measured in the first order diffraction in addition to be traditionally measured in the zeroth order transmission. The resonance peak wavelength measured in the first order diffraction is slightly blue-shifted from the resonance wavelength measured in the zeroth order transmission.

16.
Opt Lett ; 37(3): 371-3, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22297356

RESUMO

We experimentally demonstrate a wideband near-perfect light absorber in the midwave IR region using a multiplexed plasmonic metal structure. The wideband near-perfect light absorber is made of two different size gold metal squares multiplexed on a thin dielectric spacing layer on top of a thick metal layer in each unit cell. We also fabricate regular nonmultiplexed structure perfect light absorbers. The multiplexed structure IR absorber absorbs more than 98% of the incident light over a much wider spectral band than regular nonmultiplexed structure perfect light absorbers in the midwave IR region.

17.
Opt Express ; 19(19): 18122-34, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21935178

RESUMO

Electrical, optical and electro-optical simulations are presented for a waveguided, resonant, bus-coupled, p-doped Si micro-donut MOS depletion modulator operating at the 1.55 µm wavelength. To minimize the switching voltage and energy, a high-K dielectric film of HfO2 or ZrO2 is chosen as the gate dielectric, while a narrow ring-shaped layer of p-doped poly-silicon is selected for the gate electrode, rather than metal, to minimize plasmonic loss loading of the fundamental TE mode. In a 6-µm-diam high-Q resonator, an infrared intensity extinction ratio of 6 dB is predicted for a modulation voltage of 2 V and a switching energy of 4 fJ/bit. A speed-of-response around 1 ps is anticipated. For a modulator scaled to operate at 1.3 µm, the estimated switching energy is 2.5 fJ/bit.

18.
Opt Lett ; 36(24): 4764-6, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22179876

RESUMO

A superperiodic metal nanoslits device is a surface plasmon resonance optical diffraction grating in which each line of the grating consists of an array of finite number metal nanoslits. The metal nanoslits, upon optical excitations, support localized surface plasmon resonance. The superperiod of the nanoslits causes the coherent radiation of the surface plasmon resonance into the far field with angular dispersion. Therefore, localized surface plasmon resonance in the metal nanoslits can be measured with a CCD or a linear photodetector array. In this Letter, we describe a surface plasmon resonance spectral sensor using a superperiodic gold nanoslits array without using an external optical spectrometer.


Assuntos
Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Calibragem , Desenho de Equipamento , Ouro , Lasers , Metais/química , Nanotecnologia/métodos , Óptica e Fotônica , Espectrofotometria/métodos
19.
Nat Commun ; 12(1): 5161, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453050

RESUMO

For almost two decades, researchers have observed the preservation of the quantum statistical properties of bosons in a large variety of plasmonic systems. In addition, the possibility of preserving nonclassical correlations in light-matter interactions mediated by scattering among photons and plasmons stimulated the idea of the conservation of quantum statistics in plasmonic systems. It has also been assumed that similar dynamics underlie the conservation of the quantum fluctuations that define the nature of light sources. So far, plasmonic experiments have been performed in nanoscale systems in which complex multiparticle interactions are restrained. Here, we demonstrate that the quantum statistics of multiparticle systems are not always preserved in plasmonic platforms and report the observation of their modification. Moreover, we show that optical near fields provide additional scattering paths that can induce complex multiparticle interactions. Remarkably, the resulting multiparticle dynamics can, in turn, lead to the modification of the excitation mode of plasmonic systems. These observations are validated through the quantum theory of optical coherence for single- and multi-mode plasmonic systems. Our findings unveil the possibility of using multiparticle scattering to perform exquisite control of quantum plasmonic systems.

20.
Sci Rep ; 11(1): 1093, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441851

RESUMO

Unlike the single grating Czerny-Turner configuration spectrometers, a super-high spectral resolution optical spectrometer with zero coma aberration is first experimentally demonstrated by using a compound integrated diffraction grating module consisting of 44 high dispersion sub-gratings and a two-dimensional backside-illuminated charge-coupled device array photodetector. The demonstrated super-high resolution spectrometer gives 0.005 nm (5 pm) spectral resolution in ultra-violet range and 0.01 nm spectral resolution in the visible range, as well as a uniform efficiency of diffraction in a broad 200 nm to 1000 nm wavelength region. Our new zero-off-axis spectrometer configuration has the unique merit that enables it to be used for a wide range of spectral sensing and measurement applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA