Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(5): 1894-1902, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34510449

RESUMO

BACKGROUND: Ginger (Zingiber officinale Roscoe) is widely planted around the world. Owing to continuous planting, ginger is seriously affected by soilborne fungi, bacteria, and nematodes. Although preplant soil fumigation is an effective prevention strategy of soilborne diseases, individual fumigant and technology could not provide effective control of ginger soilborne disease. In our research, different combinations of soil fumigants and seed rhizome treatments were evaluated by monitoring the soil pathogens population, ginger growth, yield, and estimation of economic benefits. RESULTS: Soil fumigation effectively reduced the population of soilborne pathogens, and chloropicrin had a better control effect on soilborne pathogens than dazomet did. Preplant soil fumigation and seed rhizome treatment not only provide good control of soilborne disease, but also reduced the incidence of plant foliar pest and disease. Average yield increase rate of seed rhizome treatment was 12.0%; the highest yield increase was 24.4%. The average cost of seed rhizome treatment only increased by about 2.86%, but the rate of net revenue increase for the seed rhizome treatment reached up to 19.1%. CONCLUSION: Seed rhizome treatment is a very cost-effective soilborne disease control technology. In the management of soilborne diseases, the combined application of soil fumigation and seed rhizome treatment can reduce the risk of crops infected by soilborne diseases and ensure high and stable crop yields. © 2021 Society of Chemical Industry.


Assuntos
Fumigação , Zingiber officinale , Análise Custo-Benefício , Doenças das Plantas/prevenção & controle , Rizoma , Sementes , Solo
2.
Int J Mol Sci ; 20(14)2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31337149

RESUMO

Penicillium italicum is the principal pathogen causing blue mold of citrus. Searching for novel antifungal agents is an important aspect of the post-harvest citrus industry because of the lack of higher effective and low toxic antifungal agents. Herein, the effects of 2-methoxy-1,4-naphthoquinone (MNQ) on P. italicum and its mechanism were carried out by a series of methods. MNQ had a significant anti-P. italicum effect with an MIC value of 5.0 µg/mL. The label-free protein profiling under different MNQ conditions identified a total of 3037 proteins in the control group and the treatment group. Among them, there were 129 differentially expressed proteins (DEPs, up-regulated > 2.0-fold or down-regulated < 0.5-fold, p < 0.05), 19 up-regulated proteins, 26 down-regulated proteins, and 67 proteins that were specific for the treatment group and another 17 proteins that were specific for the control group. Of these, 83 proteins were sub-categorized into 23 hierarchically-structured GO classifications. Most of the identified DEPs were involved in molecular function (47%), meanwhile 27% DEPs were involved in the cellular component and 26% DEPs were involved in the biological process. Twenty-eight proteins identified for differential metabolic pathways by KEGG were sub-categorized into 60 classifications. Functional characterization by GO and KEGG enrichment results suggests that the DEPs are mainly related to energy generation (mitochondrial carrier protein, glycoside hydrolase, acyl-CoA dehydrogenase, and ribulose-phosphate 3-epimerase), NADPH supply (enolase, pyruvate carboxylase), oxidative stress (catalase, glutathione synthetase), and pentose phosphate pathway (ribulose-phosphate 3-epimerase and xylulose 5-phosphate). Three of the down-regulated proteins selected randomly the nitro-reductase family protein, mono-oxygenase, and cytochrome P450 were verified using parallel reaction monitoring. These findings illustrated that MNQ may inhibit P. italicum by disrupting the metabolic processes, especially in energy metabolism and stimulus response that are both critical for the growth of the fungus. In conclusion, based on the molecular mechanisms, MNQ can be developed as a potential anti-fungi agent against P. italicum.


Assuntos
Proteínas Fúngicas/metabolismo , Naftoquinonas/farmacologia , Penicillium/efeitos dos fármacos , Penicillium/metabolismo , Proteoma , Proteômica , Biologia Computacional/métodos , Proteínas Fúngicas/genética , Ontologia Genética , Anotação de Sequência Molecular , Naftoquinonas/química , Penicillium/genética , Proteômica/métodos
3.
Ecotoxicol Environ Saf ; 140: 191-197, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28260684

RESUMO

The aims of this study were to evaluate the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in industrial and agricultural soils using chemical methods and a bioassay, and to study the relationships between the methods. This was conducted by comparing the quantities of PAHs extracted from two manufactured gas plant (MGP) soils and an agricultural soil with low level contamination by solid-phase micro-extraction (SPME) and Tenax-TA extraction with the quantities taken up by the earthworm (Eisenia fetida). In addition, a biodegradation experiment was conducted on one MGP soil (MGP-A) to clarify the relationship between PAH removal by biodegradation and the variation in PAH concentrations in soil pore water. Results demonstrated that the earthworm bioassay could not be used to examine PAH bioavailability in the tested MGP soils; which was the case even in the diluted MGP-A soils after biodegradation. However, the bioassay was successfully applied to the agricultural soil. These results suggest that earthworms can only be used for bioassays in soils with low toxicity. In general, rapidly desorbing concentrations extracted by Tenax-TA could predict PAH concentrations accumulated in earthworms (R2=0.66), while SPME underestimated earthworm concentrations by a factor of 2.5. Both SPME and Tenax extraction can provide a useful tool to predict PAH bioavailability for earthworms, but Tenax-TA extraction was proven to be a more sensitive and precise method than SPME for the prediction of earthworm exposure in the agricultural soil.


Assuntos
Oligoquetos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Solo/química , Agricultura , Animais , Biodegradação Ambiental , Bioensaio/métodos , Disponibilidade Biológica , Gases , Indústrias , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Polímeros/farmacocinética , Poluentes do Solo/farmacocinética , Poluentes do Solo/toxicidade , Extração em Fase Sólida/métodos
4.
Pestic Biochem Physiol ; 140: 90-96, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28755701

RESUMO

The antifungal activity of oils extracted from Eupatorium adenophorum was tested against five phytopathogens in vitro. Oil extracts inhibited the mycelial growth of Phytophthora capsici which causes phytophthora blight in pepper. The minimum inhibitory concentration of oils against P. capsici was 500µg/ml after 7days incubation. At the ultrastructural level, oil extracts caused complete disorganization of intracellular organelles, cytoplasm depletion, disruption of cytoplasmic membranes and the cell wall. Membrane permeability increased with the increasing concentration of oil extracts. These results suggested that these oil extracts exhibited multiple modes of action including disruption of the cell membrane system. Furthermore, oil extracts combined with synthetic fungicides synergistically inhibited mycelial growth of P. capsici, which creates the possibility of reducing fungicide concentration needed to successfully control phytophthora blight in commercial pepper production. This study's use of multiple methods of analysis has increased our understanding of the mode of action of E. adenophorum oil extracts against P. capsici.


Assuntos
Ageratina/química , Antifúngicos/farmacologia , Phytophthora/efeitos dos fármacos , Óleos de Plantas/farmacologia , Antifúngicos/química , Folhas de Planta , Óleos de Plantas/química
5.
Cell Physiol Biochem ; 40(5): 982-992, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27941337

RESUMO

BACKGROUND: CXCL12 is pivotal for cholinergic neurons, and it induces the expressions of several genes that are essential for synthesis and storage of acetylcholine(ACh), specifically choline acetyltransferase, vesicular ACh transporter (VAChT), and choline transporter. The present study explored the impact of pharmacological Akt inhibition upon cholinergic gene expression. METHODS: Western blotting was employed to determine the level of p-AKT, RT-PCR to check the mRNA levels of and CHT1(choline transporter1),VAChT and ChAT, ELISA to decipher the secretion of ACh and the activity of choline acetyltransferase. RESULTS: Here we demonstrated, in the rat pheochromocytoma cell line PC12 and in primary rat neuronal cultures, that CXCL12-evoked up-regulation of CHT1, VAChT and ChAT was mediated by Akt. Inhibition of Akt by the pharmacological inhibitor GSK690693 eliminated CXCL12-stimulated increases in cholinergic gene expression. Moreover, treatment with GSK690693 reversed CXCL12-evoked increases in choline acetyltransferase activity and ACh production. CONCLUSION: Our results suggest that CXCL12 contributes to cholinergic gene expression via Akt signaling pathway.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Quimiocina CXCL12/farmacologia , Colina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Benzilaminas , Sobrevivência Celular/efeitos dos fármacos , Colina O-Acetiltransferase/metabolismo , Ciclamos , Regulação da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicolipídeos/farmacologia , Compostos Heterocíclicos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxidiazóis/farmacologia , Células PC12 , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Regulação para Cima/efeitos dos fármacos
6.
Neurosignals ; 24(1): 95-101, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27771721

RESUMO

BACKGROUND/AIMS: Leptin, an adipocytokine produced endogenously in the brain, is decreased in Alzheimer's disease(AD) and has also been shown to reduce Aß levels in vitro and in vivo. Sets of evidence show that leptin reduces Aß production and tau phosphorylation in neuronal cells and transgenic mice models of AD. Herein, we investigated the signaling pathway activated by leptin, to better understand its mechanism of action. METHODS: Western blotting was performed to assess the levels of phosphor-tau and Bax, RT-PCR to check the mRNA level of Bax. RESULTS: Leptin treatment significantly blunted Aß-evoked tau phosphorylation and Bax levels, effects of which could be reversed by antagonist of Wnt signaling. CONCLUSION: The data indicate that Leptin may provide a novel therapeutic approach to AD treatment via wnt signaling.

7.
Neurosignals ; 24(1): 40-47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27318974

RESUMO

BACKGROUND/AIMS: Alzheimer's disease (AD) is characterized by accumulation of ß-amyloid (Aß), However, the mechanism of how Aß affects neuronal cell death remains elusive. The balance of pro- and anti-apoptotic Bcl-2 family proteins (e.g., Bcl-2 and Bax) has been known to play a pivotal role in neuronal cell death. Of note, expression levels of these proteins are changed in the neurons in AD. To date no study has elusidated the relationship between Aß and Bax. METHODS: The present study explored the role of Wnt/ß-catenin pathway in the neurotoxic effect of Aß25-35. Flow cytometry was employed to determine the apoptosis, western blotting to assess the protein abundance of Bcl-2 and BAX, MTT assay to decipher the cells viability. RESULTS: As a result, the addition of Wnt3a significantly prevented oligomeric Aß-induced neuronal cell death and viability. Furthermore, treatment with Aß25-35 increased Bax and Bcl-2 protein abundance and mRNA levels, an effect significantly blocked by Wnt3a (100 ng/ml) and GSK3ß inhibitor TWS119 (10µM). CONCLUSION: These findings are first to demonstrate that Wnt/ß-catenin signaling pathway regulates Aß25-35-induced apoptosis.

8.
Neurosignals ; 24(1): 88-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27603322

RESUMO

BACKGROUND/AIMS: Alzheimer's disease (AD) is characterized by two major hallmarks: the deposition and accumulation of ß-amyloid (Aß) peptide and hyperphosphorylated tau in intracellular neurofibrillary tangles. Sets of evidence show that leptin reduces Aß production and tau phosphorylation. Herein, we investigated the signaling pathways activated by leptin, to extensively understand its mechanism. METHODS: Western blotting was employed to assess the protein abundance of p-tau and BAX, MTT assay to decipher the cells viability. RESULTS: Leptin decreased tau phosphorylation, an effect was dependent on the activation of JAK2. CONCLUSION: The data suggest that JAK2 is involved in AD-related pathways.

9.
J Environ Qual ; 43(5): 1656-62, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25603251

RESUMO

Soil fumigation is an important treatment in the production chain of fruit and vegetable crops, but fumigant emissions contribute to air pollution. Biochar as a soil amendment has shown the potential to reduce organic pollutants, including pesticides, in soils through adsorption and other physicochemical reactions. A laboratory column study was performed to determine the effects of soil applications of biochar for reducing emissions of the fumigant 1,3-dichloropropene (1,3-D). The experimental treatments comprised of unamended and amended with biochar at doses of 0, 0.5, 1, 2, and 5% (w/w) in the top 5 cm soil layer. The unamended treatment resulted in the highest emission peak flux at 48 to 66 µg m s. Among the biochar amendment treatments, the highest peak flux (0.83 µg m s) was found in the biochar 0.5% treatment. The total emission loss was 35.7 to 40.2% of applied for the unamended treatment and <0.1 to 2.9% for the biochar-amendment treatments. A germination bioassay with cucumber seeds showed that ≥7 d of aeration would be needed to avoid phytotoxicity before replanting in biochar-containing fumigated soil. The results indicate that treatments with 0.5% or more biochar amendment reduced emission peak flux by >99.8% and showed total 1,3-D emission loss by >92% compared with that without biochar. The amendment of surface soil with biochar shows a great potential for reducing fumigant emissions.

10.
Plant Dis ; 98(3): 384-388, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30708449

RESUMO

Development of effective alternative soil fumigants is essential to the phasing out of methyl bromide (MeBr) while keeping major soilborne pathogens under control. Here, we report on the laboratory studies and field trials evaluating methyl iodide (MeI) and chloropicrin (Pic) for control of major soilborne ginger (Zingiber officinale) pathogens Ralstonia solanacearum, Pythium spp., Fusarium oxysporum, and Meloidogyne incognita in Shandong province of China. Laboratory studies indicated that MeI at 24 mg/kg of soil was most effective, reducing four pathogens by >90%. Treatments with MeI+Pic at 12 mg/kg (1:3 and 1:5) also reduced these pathogens by >82%. In the field trials, MeI at 30 or 40 g/m2 and MeI+Pic (1:3) at 40 g/m2 yielded excellent long-term control of all target pathogens. These treatments allowed ginger plants to maintain vigorous growth and produce a greater number of tillers (>12 per plant), and increased ginger yields by >80% compared with the nontreated controls. MeI at a reduced rate of 20 g/m2 or Pic at 40 g/m2 provided levels of disease control similar to MeBr. These studies demonstrated that injection treatments with MeI at 30 and 40 g/m2, and MeI+Pic (1:3) at 40 g/m2, followed by covering with virtually impermeable film, are effective alternatives of soil fumigation for control of the major ginger pathogens in Shandong.

11.
Environ Pollut ; 345: 123476, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311160

RESUMO

A biochar-intensified phytoremediation experiment was designed to investigate the dynamic effects of different biochars on polycyclic aromatic hydrocarbon (PAH) removal in ryegrass rhizosphere contaminated soil. Maize and wheat straw biochar pyrolyzed at 300 °C and 500 °C were amended into PAH-contaminated soil, and then ryegrass (Lolium multiflorum L.) was planted for 90 days. Spearman's correlations among PAH removal, enzyme activity, abundance of PAH-ring hydroxylating dioxygenase (PAH-RHDα), and fungal and bacterial community structure were analyzed to elucidate the microbial degradation mechanisms during the combined remediation process. The results showed that 500 °C wheat straw biochar had higher surface area and more nutrients, and significantly accelerated the phytoremediation of PAHs (62.5 %), especially for high molecular weight PAH in contaminated soil. The activities of urease and dehydrogenase and the abundance of total and PAH-degrading bacteria, which improved with time by biochar and ryegrass, had a positive correlation with the removal rate of PAHs. Biochar enhanced the abundance of gram-negative (GN) PAH-RHDα genes. The GN PAH-degraders, Sphingomonas, bacteriap25, Haliangium, and Dongia may play vital roles in PAH degradation in biochar-amended rhizosphere soils. Principal coordinate analysis indicated that biochar led to significant differences in fungal community structures before 30 days, while the diversity of the bacterial community composition depended on planting ryegrass after 60 days. These findings imply that the structural reshaping of microbial communities results from incubation time and the selection of biochar and ryegrass in PAH-contaminated soils. Applying 500 °C wheat straw biochar could enhance the rhizoremediation of PAH-contaminated soil and benefit the soil microbial ecology.


Assuntos
Carvão Vegetal , Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química , Biodegradação Ambiental , Poluentes do Solo/análise , Microbiologia do Solo , Bactérias/genética , Bactérias/metabolismo
12.
J Hazard Mater ; 466: 133684, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310844

RESUMO

In order to evaluate the feasibility of rice husk and rice husk biochar on assisting phytoremediation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) co-contaminated soils, a 150-day pot experiment planted with alfalfa was designed. Rice husk and its derived biochar were applied to remediate a PAHs, Zn, and Cr co-contaminated soil. The effects of rice husk and biochar on the removal and bioavailability of PAHs and HMs, PAH-ring hydroxylating dioxygenase gene abundance and bacterial community structure in rhizosphere soils were investigated. Results suggested that rice husk biochar had better performance on the removal of PAHs and immobilization of HMs than those of rice husk in co-contaminated rhizosphere soil. The abundance of PAH-degraders, which increased with the culture time, was positively correlated with PAHs removal. Rice husk biochar decreased the richness and diversity of bacterial community, enhanced the growth of Steroidobacter, Bacillus, and Sphingomonas in rhizosphere soils. However, Steroidobacter, Dongia and Acidibacter were stimulated in rice husk amended soils. According to the correlation analysis, Steroidobacter and Mycobacterium may play an important role in PAHs removal and HMs absorption. The combination of rice husk biochar and alfalfa would be a promising method to remediate PAHs and HMs co-contaminated soil.


Assuntos
Metais Pesados , Oryza , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Microbiologia do Solo , Carvão Vegetal/química , Bactérias/genética , Solo/química , Medicago sativa
13.
Food Sci Nutr ; 11(6): 3422-3432, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324834

RESUMO

The small intestine serves as the first channel of dietary Vitamin A (VA) and the unique organ of VA absorption and metabolism. However, there have not been extensive investigations on the exact mechanisms within VA-related changes in intestinal metabolic disorders. This research is designed to analyze whether and how VA affects intestinal metabolic phenotypes. Male C57BL/6 mice after weaning were randomly fed a VA control diet (VAC) or a VA-deficient diet (VAD) during the entire pregnancy and lactation process. After a total of 11 weeks, cohorts of VA deprived were next fed to a VA control diet (VAD-C) for another 8 weeks. The concentration of retinol was measured by a high-performance liquid chromatography system. The 16S gene sequencing was used to evaluate the intestinal microbiota changes. Through the use of histological staining, western blots, quantitative PCR, and enzyme-linked immunosorbent assays, the intestinal morphology, inflammatory factors, and intestinal permeability were all evaluated. Following the decrease of the tissue VA levels, VAD mice show a decrease in tissue VA levels, community differences, and the richness and diversity of intestinal microbiota. VAD diet-driven changes occur in intestinal microbiota, accompanied by a higher mRNA expression of intestinal inflammatory cytokines and an increase in intestinal permeability. As dietary VA is reintroduced into VAD diet-fed mice, the tissue VA levels, inflammatory response, and intestinal homeostasis profiles are all restored, which are similar to those found after the occurrence of VA-controlled changes within intestinal microbiota. VA deficiency caused the imbalance of intestinal metabolic phenotypes through a mechanism involving changes in intestinal microbiota. It is thought that intestinal microbiota metabolic influences represent a new salient and additional mechanism, which can be used as a new method to achieve the onset and treatment of the effect of VAD on intestinal homeostasis impairment.

14.
Sci Total Environ ; 838(Pt 2): 156076, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35597344

RESUMO

Biochar and ryegrass have been used in the remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils; however, the effects of different biochar application levels on the dissipation of PAHs, bacterial communities, and PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes in rhizosphere soil remain unclear. In this study, enzyme activity tests, real-time quantitative polymerase chain reaction (PCR), and high-throughput sequencing were performed to investigate the effects of different proportions of rape straw biochar (1%, 2%, and 4% (w/w)) on the degradation of PAHs, as well as the associated changes in the soil bacterial community and PAH-RHDα gene expression. The results revealed that biochar enhanced the rhizoremediation of PAH-contaminated soil and that 2% biochar-treated rhizosphere soil was the most effective in removing PAHs. Furthermore, urease activity, abundance and activity of total bacteria, and PAH-degrading bacteria were enhanced in soil that was amended with biochar and ryegrass. Additionally, the activity of 16S rDNA and PAH-RHDα gram-negative (GN) genes increased with increasing biochar dosage and had a positive correlation with the removal of PAHs. Biochar changed the rhizosphere soil bacterial composition and α-diversity, and promoted the growth of Pseudomonas and Zeaxanthinibacter. In addition, the relative abundance of Pseudomonas was positively correlated with PAH removal. These findings imply that rape straw biochar can enhance the rhizoremediation of PAH-contaminated soil by changing soil bacterial communities and stimulating the expression of PAH-RHDα GN genes. The 2% of rape straw biochar combined with ryegrass would be an effective method to remediate the PAH-contaminated soil.


Assuntos
Lolium , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Carvão Vegetal , Expressão Gênica , Lolium/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Pseudomonas/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/análise
15.
RSC Adv ; 12(24): 15133-15144, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35702436

RESUMO

Fungi Fusarium proliferatum and the toxins it produces are hazardous to agricultural plants, animals, and human health. However, there is a lack of more effective and environment-friendly natural anti-F. proliferatum agents. In the search for natural anti-fungal agents, we found that naturally originated 2-methoxy-1,4-naphthoquinone (MNQ) with a minimal inhibitory dose of 8.0 mg L-1 possessed a potential inhibitory effect on F. proliferatum. The results of transcriptomic, proteomic, and metabolomic reveal a total of 1314 differential expression genes (DEGs, 873 up-regulated and 441 down-regulated), 259 differential expression proteins (DEPs, 104 up-regulated and 155 down-regulated), and 86 differential accumulation metabolites (DAMs, 49 up-regulated and 37 down-regulated) in MNQ-induced F. proliferatum. Further, the correlation analysis of transcriptomic, proteomic, and metabolomic indicated that these DEGs, DEPs, and DAMs were co-mapped in the pathways of glyoxylate and dicarboxylate metabolism, glycine, serine, and threonine metabolism, and pyruvate metabolism that linked to the TCA cycle. Furthermore, the key DEGs of the significantly co-mapped pathways were verified with qPCR analysis, which was related to the permeability of the cell membrane of F. proliferatum. Thus, these findings will provide fundamental scientific data on the molecular shifts of MNQ-induced F. proliferatum.

16.
Environ Sci Pollut Res Int ; 28(20): 25692-25700, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33462693

RESUMO

Phytomicrobial remediation technology of PAH-contaminated soils has drawn great attention due to its low-cost, eco-friendly, and effective characteristics, but the mechanism underlying the removal of PAHs by rhizosphere in wastewater-irrigated soil is so far not clear. To evaluate the dissipation of PAHs and the shifts of bacterial community structure under plant-microorganism symbiotic system in an agricultural soil, a rhizo-box experiment with Fire Phoenix (a genotype mixture of Fesctuca arundinecea L.) or/and inoculated Mycobacterium sp. was conducted for 60 days. The changes of bacterial community structure and the contents of PAHs were analyzed by denaturing gradient gel electrophoresis (DGGE) and high-performance liquid chromatography (HPLC), respectively. The results showed that the removal rate of PAHs in phytomicrobial combined treatment was 53.7% after 60 days. The PAH-degraders were dominated by Microbacterium sp., Sphingomonas sp., Mycobacterium sp., and Flavobacterium sp. The plant of Fire Phoenix induced the appearance of Pseudomonas sp. and TM7 phylum sp. oral clone. The highest of bacterial diversity index was observed in unrhizosphere soils (MR-), rather than that in rhizosphere soils (MR+). In combination, phytomicrobial combined treatment of Fire Phoenix and Mycobacterium strain enhanced the removal rate of PAHs and changed the structure of bacterial community and bacterial diversity. Bacterial community has great effect on PAH degradation in PAH-contaminated soil from the wastewater-irrigated site. Our study can provide support information for PAH degradation enhancement by the synergetic effect of Fire Phoenix and Mycobacterium sp.


Assuntos
Mycobacterium , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Genótipo , Mycobacterium/genética , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
17.
Mol Med Rep ; 23(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33649800

RESUMO

Severe acute pancreatitis (SAP) is a common acute abdominal disease accompanied by systemic inflammatory response syndrome, which may be complicated by acute kidney injury (AKI). Isoacteoside (ISO) is the active ingredient of Monochasma savatieri Franch. ex Maxim and has been reported to have anti­inflammatory activities. The present study detected the effects of ISO on AKI induced by SAP in rat models, and the underlying mechanism. The optimum dose of ISO for treatment of AKI induced by SAP was determined. The serum levels of TNF­α and IL­6 were estimated using an ELISA. Kidney injury was evaluated by histopathological examination, and the expression levels of nitric oxide were also detected. The expression levels of Toll­like receptor 4 (TLR4) and NF­κB p65 were measured by immunohistochemistry and western blotting. The results revealed that ISO may serve a critical role in ameliorating AKI induced by SAP. These effects may be associated with the TLR4/NF­κB signaling pathway.


Assuntos
Injúria Renal Aguda/prevenção & controle , Glucosídeos/farmacologia , Rim/efeitos dos fármacos , Pancreatite/complicações , Fenóis/farmacologia , Injúria Renal Aguda/sangue , Injúria Renal Aguda/etiologia , Animais , Anti-Inflamatórios/farmacologia , Interleucina-6/sangue , Rim/metabolismo , Rim/patologia , Masculino , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Pancreatite/patologia , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/sangue
18.
J Environ Qual ; 39(3): 917-22, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20400587

RESUMO

Chloropicrin (CP) is highly volatile and may pose strong exposure risks for humans and the environment. A gelatin capsule formulation was developed to reduce atmospheric CP emissions and to improve application safety. The objective of this study was to determine the distribution, atmospheric emissions, and soil residual of CP after application in gelatin capsules to soil columns. Two treatments were studied: (i) CP liquid injection with polyethylene film and (ii) CP gelatin capsules with polyethylene film. For the CP liquid injection treatment, the concentration of CP peaked (120.7 microg cm(-3)) at the 20-cm depth 1 h after fumigant injection and decreased with time; at other depths, the CP concentration increased initially and decreased after a typical diffusion-dispersion process. For the gelatin capsule treatment, concentrations of CP at 20 cm depth increased slowly and peaked at 30.04 microg cm(-3) 264 h after application, indicating a slow CP release through the gelatin capsule shells. The results indicate that a rapid breakdown of gelatin capsules occurred between 11 and 12 d after application. The application of CP gelatin capsules reduced total CP emission by approximately 3 times compared with liquid injection with film cover. Similar residual soil CP was found between the liquid injection and the two gelatin capsule treatments. Chloropicrin gelatin capsules could be a promising new technology for reducing environmental emissions and potential human exposure.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental/métodos , Fumigação , Hidrocarbonetos Clorados/química , Poluentes do Solo/química , Solo/análise , Gelatina , Plásticos
19.
Chemosphere ; 261: 127779, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32736249

RESUMO

Rhizo-box experiments were conducted to analyze the phyto-microbial remediation potential of a grass (Lolium multiflorum L.) and a crop (Glycine max L.) combined with exogenous strain (Pseudomonas sp.) for polycyclic aromatic hydrocarbons (PAHs) contaminated soils. The dynamics of bacterial community composition, abundances of 16 S rDNA and ring hydroxylating dioxygenases (RHDα) genes, and removal of PAHs were evaluated and compared on four culture stages (days 0, 10, 20, and 30). The results showed that 8.65%-47.42% of Σ12 PAHs were removed after 30 days of cultivation. Quantitative polymerase chain reaction (qPCR) analysis indicated that treatments with soybean and ryegrass rhizosphere markedly increased the abundances of total bacteria and PAH-degraders, especially facilitated the growth of gram-negative degrading bacteria. Flavobacterium sp. and Pseudomonas sp. were the main and active strains in the control soil. However, the presence of plants and/or exogenous Pseudomonas sp. changed the soil bacterial community structure and modified the bacterial diversity of PAH-degraders. On the whole, this study showed that the high molecular weight PAHs removal efficiency of phyto-microbial remediation with ryegrass was better than those of remediation with soybean. Furthermore, the removals of PAHs strongly coincided with the abundance of PAH-degraders and bacterial community structure.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Bactérias/metabolismo , Dioxigenases/genética , Lolium , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pseudomonas , Rizosfera , Solo/química , Poluentes do Solo/metabolismo
20.
Front Microbiol ; 11: 581219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519727

RESUMO

Termitomyces species are wild edible mushrooms that possess high nutritional value and a wide range of medicinal properties. However, the cultivation of these mushrooms is very difficult because of their symbiotic association with termites. In this study, we aimed to examine the differences in physicochemical indices and microbial communities between combs with Termitomyces basidiomes (CF) and combs without Termitomyces basidiomes (CNF). High-performance liquid chromatography (HPLC), inductively coupled plasma optical emission spectrometry (ICP-OES), gas chromatography equipped with a flame ionization detector (GC-FID), some commercial kits, high-throughput sequencing of the 16s RNA, and internal transcribed spacer (ITS) were used. Humidity, pH, and elements, i.e., Al, Ba, Fe, Mn, Ni, S, Ca, and Mg were higher while amino acids particularly alanine, tyrosine, and isoleucine were lower in CF as compared to CNF. The average contents of fatty acids were not significantly different between the two comb categories. The bacterial genera Alistipes, Burkholderia, Sediminibacterium, and Thermus were dominant in all combs. Brevibacterium, Brevundimonas, and Sediminibacterium were significantly more abundant in CF. Basidiomycota and Ascomycota were also identified in combs. Termitomyces clypeatus, Termitomyces sp. Group3, and Termitomyces sp. were the most dominant species in combs. However, any single Termitomyces species was abundantly present in an individual comb.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA