Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Small ; 20(9): e2307873, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37853209

RESUMO

Designing smart textiles for personal thermal management (PTM) is an effective strategy for thermoregulation and energy saving. However, the manufacture of versatile high-performance thermal management textiles for complex real-world environments remains a challenge due to the limitations of functional integration, material properties, and preparation procedures. In this study, an aramid fabric based on in situ anchored copper sulfide nanostructure is developed. The textile with excellent solar and Joule heating properties can effectively keep the body warm even at low energy inputs. Meanwhile, the reduced infrared emissivity of the textile decreases the thermal radiation losses and helps to maintain a constant body temperature. Impressively, the textile integrates superb electromagnetic shielding, near-complete UV protection properties, and ideal resistance to fire and bacteria. This work provides a simple strategy for fabricating multi-functional integrated wearable devices with flexibility and breathability, which is highly promising in versatile PTM applications.

2.
Small ; 20(28): e2309758, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38326102

RESUMO

Achieving relatively uniform dispersion in organic-inorganic composites with overwhelming differences in surface energy is a perennial challenge. Herein, novel eliminated polyvinylidene fluoride (EPVDF)/EPVDF functionalized barium titanate nanoparticles (EPVDF@BT) flexible piezoelectric nanogenerators (PENGs) with strong interfacial adhesion are developed via thermal stretching following sequential click chemistry. Thanks to the strong interfacial adhesion, the optimal PENGs containing ultra-high ß-phase content (97.2%) exhibit not only optimized mechanical and dielectric behaviors but also excellent piezoelectric properties with high piezoelectric output (V = 10.7 V, I = 216 nA), reliable durability (8000 cycles), ultrafast response time (20 ms), and good sensitivity (2.09 nA kPa-1), far outperforming most reported PVDF-based composites. Furthermore, COMSOL finite element simulations (FEM) confirm that the elevated stress transfer efficiency induced by the strong interfacial adhesion is the main driving force for enhanced piezoelectric performances. For practical applications, self-powered PENGs can simply but stably capture mechanical energy, drive tiny electronic devices, and serve as potential multifunctional and durable sensors for detecting human physiological motions. This work opens a pioneering avenue to break the trade-offs between piezoelectric and other properties, which is of great importance for developing self-powered flexible sensors.

3.
Appl Opt ; 57(9): 2107-2114, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29604000

RESUMO

Herein, the dependence of the dispersed phase diameter on the shear history during melt processing is verified experimentally. We fabricated different kinds of poly(methyl methacrylate) (PMMA)/poly(ethylene terephthalate) (PET) blends by modifying the shear rate and shear time in a torque rheometer. Light-scattering sheets (LSSs) were then prepared by compression molding with the above blends. The total transmittance of the LSS with a shear history of 8 min at 30 rpm and then 20 min at 5 rpm achieves 84.8% due to the drop coalescence and larger diameters of the PET scatterers in the PMMA matrix, while the total transmittance of a sheet with a shear history at only 30 rpm is just 70.8%. In addition to high total transmittance, the sheet also features high haze (beyond 92.5%) and tiny direct transmittance (less than 5%), which is vital for uniform illumination and glare protection from lasers and light-emitting diodes.

4.
Biomacromolecules ; 18(4): 1440-1448, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28301137

RESUMO

Self-assembly nucleators have been increasingly used to manipulate the crystallization of PLLA due to their strong intermolecular interaction with PLLA, while the molecular mechanism of such interaction is still unrevealed. In present work, one special self-assembly nucleator (TMC-300) with relatively high solubility in PLLA matrix, is chosen to investigate how the interaction works at molecular level to promote the crystallization of PLLA mainly through time-resolved spectroscopy. The results indicate that due to the dipole-dipole NH···O═C interaction between dissolved TMC-300 and PLLA, PLLA chains are transformed into gt conformer before TMC-300 phase-separating from PLLA melt, resulting in low energy barrier to pass for the following formation of PLLA α-crystal (α-crystal is consisted of gt conformer). Once the dissolved TMC-300 starts to self-assemble into frameworks upon cooling, the transformed PLLA chains with high population of gt conformer form the primary nuclei on the surface of such self-assembling TMC-300 frameworks. For the first time, not only the heterogeneous nucleation but also the conformational regulation of PLLA chains are proved to be responsible for the high efficiency of the self-assembly nucleators (TMC-300) in promoting the crystallization of PLLA. Therefore, conformational regulation is proposed for crystalline manipulation of PLLA, and this work brings new insight on promoting the crystallization of PLLA even other polymers by regulating their molecular conformation.


Assuntos
Benzamidas/química , Hidrazinas/química , Poliésteres/química , Varredura Diferencial de Calorimetria , Cristalização , Microscopia Eletrônica de Varredura , Conformação Molecular , Transição de Fase , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
5.
Opt Express ; 23(14): 17793-804, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26191841

RESUMO

Poly(methyl methacrylate)(PMMA)/poly(ethylene terephthalate) (PET) light scattering materials are fabricated by a simple, low-cost approach of melt blending and compression molding. We find that the competing effects of particle diameter versus number concentration of the scattering particles is the controlling factor to tailoring the optical properties of the materials, which is analyzed according to Mie scattering theory. The results show that the transmittance kept decreasing in the PET concentration range 0-10 wt% followed by a constant level in the range 10-20 wt%; however, the transmittance experienced a significant increase in the range 20-35 wt% and plateaued again after PET content exceeded 35 wt%. Therefore, the application of ordinary polymer dopant makes preparing light scattering sheets with high haze but not decreasing transmittance possible.

6.
Appl Opt ; 54(34): 10000-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26836652

RESUMO

In this paper, the effects of the molecular weight of a polycarbonate (PC) matrix on the phase morphology and optical properties of a PC/styrene-co-acrylonitrile (SAN) blend were investigated. A scanning electron microscope is used to analyze the phase morphology of the blends, and Mie scattering theory is used to analyze the changing laws of the optical properties of PC/SAN blends with the increasing of PC molecular weight. Results show that the average particle diameter is not strongly changed with different PC molecular weight because the values of the viscosity ratios are very close to each other. But it is obvious that the number of large particles gradually reduced while small particles (especially d<2 µm) significantly increased with the increasing of PC molecular weight. And the increase in small particles will result in an increase in backward scattering so the transmittance of PC/SAN blends decreases with the increase of PC molecular weight. However, the balance of the scattering coefficients and the number concentration of particles eventually lead to the haze of the blends being very close, despite having different PC molecular weights. Meanwhile, the photographs of scattering patterns indicate that the PC/SAN blends whose component weight ratios are fixed at 70:30 have excellent antiglare properties, despite the changes in molecular weight of the PC matrix.

7.
Appl Opt ; 54(4): 608-14, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25967766

RESUMO

The polycarbonate (PC)/poly(styrene-co-acrylonitrile) (SAN) (70/30) anisotropic light scattering sheet with controllable anisotropic degree was prepared by blending and hot stretching process. The morphological evolution of the dispersed particles for PC/SAN (70/30) blend during hot stretching was observed by a scanning electron microscope (SEM) and the effect of stretching deformation on the light scattering properties was investigated. The SEM photographs revealed that SAN particles deformed into ellipsoid during hot stretching. The scattering properties analysis results revealed the appearance of anisotropic light scattering for PC/SAN (70/30) blends with various deformations, and with the increase of stretching deformation, the anisotropic scattering degree increased, verifying the correctness of geometrical optical scattering theoretical analysis.

8.
ACS Appl Mater Interfaces ; 16(5): 6474-6484, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38285620

RESUMO

γ-Irradiation is a kind of high-energy ionizing ray, which has widespread applications in material, food, and medical industries as well as in the environment. Since this irradiation is invisible, quantitatively monitoring its exposure doses is crucial to irradiated targets. As a type of dosimeter, radiochromic dosimeters can detect γ-irradiation by color changing, and its strategy to realize the radiochromic behavior basically relies on active radicals from radiolysis of an external environmental medium. However, the primary problem of this external environment-mediated sensitization strategy is that it complicates the components of dosimeters. Herein, we present a novel type of self-sensitizing radiochromic poly(urethane-urea) elastomers (PUUEs), where disulfide bonds, serving as radiation-responsive and sensitizing units, are introduced. This is the first attempt to utilize radicals generated from radiolysis of weak bonds in a solid polymer matrix to sensitize color change of dye-doped radiochromic dosimeters. Moreover, it is intriguing that the simultaneously introduced aryl hydrazone bond endows dosimeters with excellent color retention and maintains the Δa* value of 72.9% even after 1 month on the basis of the as-irradiated specimen. Besides, the metathesis of disulfide bonds not only endows dosimeters with better self-healing capability, but also accelerates the postcuring behavior and hydrogen bond reconfiguration, resulting in improved mechanical performance.

9.
Polymers (Basel) ; 16(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125165

RESUMO

The development of thermally conductive polymer/boron nitride (BN) composites with excellent electrically insulating properties is urgently demanded for electronic devices. However, the method of constructing an efficient thermally conductive network is still challenging. In the present work, heterostructured multi-walled carbon nanotube-boron nitride (MWCNT-BN) hybrids were easily prepared using an electrostatic self-assembly method. The thermally conductive network of the MWCNT-BN in the thermoplastic polyurethane (TPU) matrix was achieved by the electrospinning and stack-molding process. As a result, the in-plane thermal conductivity of TPU composite films reached 7.28 W m-1 K-1, an increase of 959.4% compared to pure TPU films. In addition, the Foygel model showed that the MWCNT-BN hybrid filler could largely decrease thermal resistance compared to that of BN filler and further reduce phonon scattering. Finally, the excellent electrically insulating properties (about 1012 Ω·cm) and superior flexibility of composite film make it a promising material in electronic equipment. This work offers a new idea for designing BN-based hybrids, which have broad prospects in preparing thermally conductive composites for further practical thermal management fields.

10.
Polymers (Basel) ; 16(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39065393

RESUMO

The preparation of novel structures of light-diffusing particles is currently a research focus in the field of light-diffusing materials. This study, conducted by the common melt-blending process, controlled thermodynamic and kinetic factors to distribute smaller-sized organic silica bead (OSB) particles at the interface between a polycarbonate (PC) matrix and spherical island-phase styrene-acrylonitrile copolymer (SAN) for the in situ formation of compound eye-like microspheres with SAN as "large eyes" and OSBs as "small eyes". Through the multiple-scattering effects of these compound eye-like microspheres, these light-diffusing materials significantly improved the haze, scattering range, and light-shielding capabilities while maintaining high transmittance. Specifically, the PC/SAN-OSB light-scattering materials achieved a haze of 100% with an OSB content of only 0.17%, maintaining a transmittance of 88%. Compared with the PC/OSB system with the same level of haze, the addition of OSB was reduced by 88%. Therefore, this study achieved exceptionally effective light-diffusing materials through a simple, environmentally friendly, and low-cost preparation method, suitable for the scalable production of light-diffusing materials in new display and lighting fields.

11.
Polymers (Basel) ; 16(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257034

RESUMO

Although epoxy resin has been extensively used in the field of wind turbine blades, polyurethane has attracted much attention in recent years, due to its potential value of better fatigue resistance, lower processing viscosity and higher strength than epoxy resin blades. Herein, we construct a dense cross-linking structure in polyurethane (PU) based on different amounts of hydroxypropyl methacrylate (HPMA) with low processing viscosity and excellent mechanical properties. By increasing the content of HPMA, the thermal stability of PU is enhanced, but the micro-morphology does not change significantly. When the content of HPMA is 50 g (in 200 g copolymer), the PU sample PH-50 exhibits a viscosity of 70 MPa·s and a gelation time of 120 min at 25 °C, which is sufficient to complete processes like pouring and filling. By post-curing the PH-50 at 80 °C for 2 h, the heat distortion temperature can reach 72 °C, indicating the increase of temperature resistance. The PU copolymers also have excellent mechanical and dynamic thermo-mechanical properties due to the cross-linking structure between PU chains and poly-HPMA chains. Additionally, the PU copolymer has excellent compatibility with various glass fiber fabrics (GFF), showing a good match in the vacuum infusion experiment and great properties in the mechanical test. By compounding PH-50 with GFF, the composite with high strength is easily prepared for a wind turbine blade in various positions. The tensile strengths of the composites are all over 1000 MPa in the 0° direction. Such composites are promising for the future development of wind turbine blades that meet the stringent requirements for outstanding processing and mechanical properties.

12.
J Mater Sci Mater Med ; 24(1): 137-46, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23053812

RESUMO

Conventional sol-gel processing requires several distinct steps involving hydrolysis, condensation and drying to obtain a highly porous, glassy solid material. With the goal of achieving controlled release of small molecules, herein we focus on the acceleration of the condensation and drying steps by casting the hydrolyzed sol on a large open surface to achieve a denser 100 % silica xerogel structure. Thus, cast xerogel with a more limited porosity was prepared. The effect of synthesis parameters during sol-gel synthesis on the release kinetics of bupivacaine, vancomycin and cephalexin was investigated. The release kinetics fitted well with the Higuchi model, suggesting a diffusional release mechanism. Combining the release and nanostructure data, the formation mechanism of cast xerogel is described. Without introducing additional precursors or additives into sol-gel systems, sol-gel casting is an easy technique that further expands the applicability of sol-gel materials as excellent carriers for the controlled release of a variety of drugs.


Assuntos
Géis , Nanotecnologia , Dióxido de Silício/química , Antibacterianos/farmacocinética , Bupivacaína/farmacocinética , Cefalexina/farmacocinética , Hidrólise , Vancomicina/farmacocinética
13.
ACS Appl Mater Interfaces ; 15(34): 41019-41030, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37582186

RESUMO

Liquid high-vinyl polybutadiene (PB) possessed excellent dielectric properties, rendering them suitable candidates for adhesive films of high-frequency printed boards. However, their inherent low molecular weights resulted in chain slippage and overflow during processing, thereby diminishing the performance of the adhesive films. To address this challenge, we synthesized comb PB with long polystyrene side chains via reversible addition-fragmentation chain transfer (RAFT) polymerization, effectively immobilizing the PB backbone and restricting relative chain slippage. Controlling the length and number of "comb teeth" (styrene side chains) efficiently regulated the flowability of comb PB, achieving distinct flow states. Simultaneously, molecular dynamics simulations revealed that the elongated and inflexible polystyrene side chains of comb PB could create minuscule cavities, which impeded close packing of molecules and led to low dielectric constants (2.39/2.01, 1 MHz/10 GHz) and ultralow dielectric losses (0.0071/0.0016, 1 MHz/10 GHz). Furthermore, a series of printed circuit boards were fabricated using a comb PB adhesive film, and the signal loss was significantly reduced to 48.8% (19 GHz) in comparison with a commercial epoxy adhesive. This study demonstrated the potential of comb PB with polystyrene side chains to achieve desirable flow and dielectric properties by introducing tangles, large volume potential resistance, and microporosity compared with block structures.

14.
RSC Adv ; 13(19): 13120-13127, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37124010

RESUMO

The high value-added medical applications surely represent the leading edge of the shape-memory materials (SMPs) field. Herein, the biomedical SMPs were easily prepared via incorporating silk fibroin (SF) into poly(propylene carbonate) (PPC) through directly melt blending. Based on the intrinsic glass transition of PPC at ∼37 °C, the blends showed a body temperature responsiveness without a complex procedure for adjusting the switching temperature. By varying the SF content, the blend exhibited tunable shape-memory effects (SME), with a first enhancing but then worsening shape recoverability and a stable and excellent shape fixity. And the blend with 3 wt% SF achieved the best SME, enabling an efficient shape reconfiguration under a 37 °C water bath. It was revealed that SF acted as physical cross-links to connect the PPC chains forming a shape-memory network, thus can well retard irreversible the chain slipping of PPC, leading to the improvement of recoverability. Moreover, the results obtained from cell compatibility testing showed the huge application potential of this material in the biomedical field. This work proposed a facile preparation strategy for developing biocompatible body heat actuated shape-memory materials.

15.
Int J Biol Macromol ; 246: 125543, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355068

RESUMO

Blending poly(l-lactide) (PLLA) with elastic polymers is an efficient way to obtain highly ductile materials (> 300 %), but it is accompanied by a significant reduction in strength. In this work, a special alternating multilayered composites with alternating stereocomplex crystallite (SC) (PLLA/poly(d-lactide) (PDLA) layer) and highly oriented Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) ribbons (PLLA/PHBV layer) is in situ constructed during laminated structuring process. Experimental results show that in situ formed PHBV ribbons are limitedly distributed in the thickness direction and align parallel to the layer interfaces. More interestingly, not only highly oriented shish crystals but also sparse lamellae of PLLA, which are arrested by SC, shish crystals, and PHBV ribbons, are in situ formed. Compared with sea-island structured composites prepared by traditional compression molding, the alternating multilayered composites show an increase in elongation at break from 8.7 % to 345.1 % and an increase in yield strength from 61.4 MPa to 73.2 MPa. During the tensile testing, the PLLA/PHBV layers firstly form micro-fibrils and micro-voids, driving the molecular chains of the PLLA/PDLA layer to respond in time to external forces through stress transfer of rich continuous layer interfaces. Since shear yielding and plastic deformation can easily penetrate the entire matrix, the alternating multilayered composites go a brittle-ductile transformation and the ductility is improved significantly. The increased strength of the alternating multilayered material is ascribed to the stiff shish crystals and SC. This work provides important guidance for the durable application of strong and ductile PLLA-based materials.


Assuntos
Materiais Biocompatíveis , Poliésteres , Materiais Biocompatíveis/química , Poliésteres/química
16.
Polymers (Basel) ; 15(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959885

RESUMO

Nowadays, it is a challenge for a bone scaffold to achieve controllable drug release and a porous structure at the same time. Herein, we fabricated hydroxyapatite/poly (butylene succinate)/metoprolol tartrate (HA/PBS/MPT) composites via melt blending, aiming to provide the option of an in situ pore-forming strategy. The introduction of HA not only significantly improved the hydrophilicity of the PBS matrix by reducing the hydrophilic contact angle by approximately 36% at a 10% content, but also damaged the integrity of the PBS crystal. Both were beneficial for the penetration of phosphate-buffered saline solution into matrix and the acceleration of MPT release. Accompanied with MPT release, porous structures were formed in situ, and the HA inside the matrix was exposed. With the increase in HA content, the MPT release rate accelerated and the pore size became larger. The in vitro cytocompatibility evaluation indicated that HA/PBS/MPT composites were conductive to the adhesion, growth, and proliferation of MC3T3-E1 cells due to the HA being exposed around the pores. Thus, the MPT release rate, pore size, and cell induction ability of the HA/PBS/MPT composites were flexibly and effectively adjusted by the composition at the same time. By introducing HA, we innovatively achieved the construction of porous structures during the drug release process, without the addition of pore-forming agents. This approach allows the drug delivery system to combine controllable drug release and biocompatibility effectively, offering a novel method for bone repair material preparation. This work might provide a convenient and robust strategy for the fabrication of bone scaffolds with controllable drug release and porous structures.

17.
Front Bioeng Biotechnol ; 11: 1217938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425365

RESUMO

Multi-layered drug delivery (MLDD) system has promising potential to achieve controlled release. However, existing technologies face difficulties in regulating the number of layers and layer-thickness ratio. In our previous works, layer-multiplying co-extrusion (LMCE) technology was applied to regulate the number of layers. Herein, we utilized layer-multiplying co-extrusion technology to modulate the layer-thickness ratio to expand the application of LMCE technology. Four-layered poly (ε-caprolactone)-metoprolol tartrate/poly (ε-caprolactone)-polyethylene oxide (PCL-MPT/PEO) composites were continuously prepared by LMCE technology, and the layer-thickness ratios for PCL-PEO layer and PCL-MPT layer were set to be 1:1, 2:1, and 3:1 just by controlling the screw conveying speed. The in vitro release test indicated that the rate of MPT release increased with decreasing the thickness of the PCL-MPT layer. Additionally, when PCL-MPT/PEO composite was sealed by epoxy resin to eliminate the edge effect, sustained release of MPT was achieved. The compression test confirmed the potential of PCL-MPT/PEO composites as bone scaffolds.

18.
ACS Appl Mater Interfaces ; 15(2): 3522-3533, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36600550

RESUMO

Superhydrophobic photothermal coatings are promising for multifunctional applications due to the efficient use of solar energy, but the current challenge is to seek one easy-to-prepare material with high photothermal performance. Herein, inspired by mussel adhesion and lotus leaf surfaces, we developed superhydrophobic photothermal coatings with hierarchical structure by depositing melanin-like polydopamine (PDA) and dip-coating polydimethylsiloxane (PDMS)/hydrophobic fumed silica (SiO2) sequentially. Benefitting from the efficient photothermal conversion performance of PDA, the coated fabric can rapidly warm up to 100 °C under 100 mW/cm2 sun irradiation. Meanwhile, the coatings show excellent superhydrophobic properties (WCA of 163°), which not only prevent the adhesion of the contaminant from maintaining a long-term and efficient photothermal performance but also help the fabric to own outstanding passive anti-icing and active deicing performances. Furthermore, the superhydrophobic properties of the coatings can be maintained after sandpaper abrasion, repeat tape-peeling, and ultrasonication. In addition, superior UV protection of the coatings can meet the long-term service conditions under outdoor sunlight. The PDA-based superhydrophobic photothermal coatings are believed to inspire new strategies for solar-driven multifunctional applications such as personal thermal management, anti-icing/deicing of variously shaped components, photothermal antibacterial, and so on.

19.
Nanomicro Lett ; 15(1): 146, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286799

RESUMO

As the miniaturization of electronic devices and complication of electronic packaging, there are growing demands for thermal interfacial materials with enhanced thermal conductivity and the capability to direct the heat toward heat sink for highly efficient heat dissipation. Pitch-based carbon fiber (CF) with ultrahigh axial thermal conductivity and aspect ratios exhibits great potential for developing thermally conductive composites as TIMs. However, it is still hard to fabricate composites with aligned carbon fiber in a general approach to fully utilize its excellent axial thermal conductivity in specific direction. Here, three types of CF scaffolds with different oriented structure were developed via magnetic field-assisted Tetris-style stacking and carbonization process. By regulating the magnetic field direction and initial stacking density, the self-supporting CF scaffolds with horizontally aligned (HCS), diagonally aligned and vertically aligned (VCS) fibers were constructed. After embedding the polydimethylsiloxane (PDMS), the three composites exhibited unique heat transfer properties, and the HCS/PDMS and VCS/PDMS composites presented a high thermal conductivity of 42.18 and 45.01 W m-1 K-1 in fiber alignment direction, respectively, which were about 209 and 224 times higher than that of PDMS. The excellent thermal conductivity is mainly ascribed that the oriented CF scaffolds construct effective phonon transport pathway in the matrix. In addition, fishbone-shaped CF scaffold was also produced by multiple stacking and carbonization process, and the prepared composites exhibited a controlled heat transfer path, which can allow more versatility in the design of thermal management system.

20.
ACS Appl Mater Interfaces ; 15(18): 22602-22615, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37097807

RESUMO

Constructing porous structures in electromagnetic interference (EMI) shielding materials is a common strategy to decrease the secondary pollution caused by the reflection of electromagnetic waves (EMWs). However, the lack of direct analysis methods makes it difficult to fully understand the effect of porous structures on EMI, hindering EMI composites' development. Furthermore, while deep learning techniques, such as deep convolutional neural networks (DCNNs), have significantly impacted material science, their lack of interpretability limits their applications to property predictions and defect detection tasks. Until recently, advanced visualization techniques provided an approach to reveal the relevant information behind DCNNs' decisions. Inspired by it, a visual approach for porous EMI nanocomposite mechanism studies is proposed. This work combines DCNN visualization with experiments to investigate EMI porous nanocomposites. First, a rapid and straightforward salt-leaked cold-pressing powder sintering method is employed to prepare high-EMI CNTs/PVDF composites with various porosities and filler loadings. Notably, the solid sample with 30 wt % loading maintains an ultrahigh shielding effectiveness of 105 dB. The influence of porosity on the shielding mechanism is discussed macroscopically based on the prepared samples. To determine the shielding mechanism, a modified deep residual network (ResNet) is trained on a dataset of scanning electron microscopy (SEM) images of the samples. The Eigen-CAM visualization of the modified ResNet intuitively shows that the amount and depth of the pores impact the shielding mechanisms and that shallow pore structures contribute less to EMW absorption. This work is instructive for material mechanism studies. Besides, the visualization has the potential as a porous-like structure marking tool.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA