Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(13): 2305-2325, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36813575

RESUMO

Cholecystokinin (CCK) enables excitatory circuit long-term potentiation (LTP). Here, we investigated its involvement in the enhancement of inhibitory synapses. Activation of GABA neurons suppressed neuronal responses in the neocortex to a forthcoming auditory stimulus in mice of both sexes. High-frequency laser stimulation (HFLS) of GABAergic neurons potentiated this suppression. HFLS of CCK interneurons could induce the LTP of their inhibition toward pyramidal neurons. This potentiation was abolished in CCK knock-out mice but intact in mice with both CCK1R and 2R knockout of both sexes. Next, we combined bioinformatics analysis, multiple unbiased cell-based assays, and histology examinations to identify a novel CCK receptor, GPR173. We propose GPR173 as CCK3R, which mediates the relationship between cortical CCK interneuron signaling and inhibitory LTP in the mice of either sex. Thus, GPR173 might represent a promising therapeutic target for brain disorders related to excitation and inhibition imbalance in the cortex.SIGNIFICANCE STATEMENT CCK, the most abundant and widely distributed neuropeptide in the CNS, colocalizes with many neurotransmitters and modulators. GABA is one of the important inhibitory neurotransmitters, and much evidence shows that CCK may be involved in modulating GABA signaling in many brain areas. However, the role of CCK-GABA neurons in the cortical microcircuits is still unclear. We identified a novel CCK receptor, GPR173, localized in the CCK-GABA synapses and mediated the enhancement of the GABA inhibition effect, which might represent a promising therapeutic target for brain disorders related to excitation and inhibition imbalance in the cortex.


Assuntos
GABAérgicos , Receptores da Colecistocinina , Masculino , Feminino , Camundongos , Animais , GABAérgicos/farmacologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Neurônios GABAérgicos/fisiologia , Camundongos Knockout , Interneurônios , Colecistocinina , Ácido gama-Aminobutírico/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores Acoplados a Proteínas G/genética
2.
Phytother Res ; 38(5): 2128-2153, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400575

RESUMO

Thrombotic disorders, such as myocardial infarction and stroke, are the leading cause of death in the global population and have become a health problem worldwide. Drug therapy is one of the main antithrombotic strategies, but antithrombotic drugs are not completely safe, especially the risk of bleeding at therapeutic doses. Recently, natural products have received widespread interest due to their significant efficacy and high safety, and an increasing number of studies have demonstrated their antithrombotic activity. In this review, articles from databases, such as Web of Science, PubMed, and China National Knowledge Infrastructure, were filtered and the relevant information was extracted according to predefined criteria. As a result, more than 100 natural products with significant antithrombotic activity were identified, including flavonoids, phenylpropanoids, quinones, terpenoids, steroids, and alkaloids. These compounds exert antithrombotic effects by inhibiting platelet activation, suppressing the coagulation cascade, and promoting fibrinolysis. In addition, several natural products also inhibit thrombosis by regulating miRNA expression, anti-inflammatory, and other pathways. This review systematically summarizes the natural products with antithrombotic activity, including their therapeutic effects, mechanisms, and clinical applications, aiming to provide a reference for the development of new antithrombotic drugs.


Assuntos
Produtos Biológicos , Fibrinolíticos , Trombose , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Trombose/tratamento farmacológico , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Animais , Ativação Plaquetária/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
3.
Inflammopharmacology ; 32(3): 1743-1757, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38568399

RESUMO

Inflammation can be triggered by any factor. The primary pathological manifestations can be summarized as the deterioration, exudation, and proliferation of local tissues, which can cause systemic damage in severe cases. Inflammatory lesions are primarily localized but may interact with body systems to cause provocative storms, parenchymal organ lesions, vascular and central nervous system necrosis, and other pathologic responses. Tetrandrine (TET) is a bisbenzylquinoline alkaloid extracted from the traditional Chinese herbal medicine Stephania tetrandra, which has been shown to have significant efficacy in inflammatory conditions such as rheumatoid arthritis, hepatitis, nephritis, etc., through NF-κB, MAPK, ERK, and STAT3 signaling pathways. TET can regulate the body's imbalanced metabolic pathways, reverse the inflammatory process, reduce other pathological damage caused by inflammation, and prevent the vicious cycle. More importantly, TET does not disrupt body's normal immune function while clearing the body's inflammatory state. Therefore, it is necessary to pay attention to its dosage and duration during treatment to avoid unexpected side effects caused by a long half-life. In summary, TET has a promising future in treating inflammatory diseases. The author reviews current therapeutic studies of TET in inflammatory conditions to provide some ideas for subsequent anti-inflammatory studies of TET.


Assuntos
Benzilisoquinolinas , Inflamação , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Humanos , Animais , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
4.
Anal Bioanal Chem ; 415(17): 3503-3513, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37199792

RESUMO

Bear bile powder (BBP) is a valuable animal-derived product with a huge adulteration problem on market. It is a crucially important task to identify BBP and its counterfeit. Electronic sensory technologies are the inheritance and development of traditional empirical identification. Considering that each drug has its own specific odor and taste characteristics, electronic tongue (E-tongue), electronic nose (E-nose) and GC-MS were used to evaluate the aroma and taste of BBP and its common counterfeit. Two active components of BBP, namely tauroursodeoxycholic acid (TUDCA) and taurochenodeoxycholic acid (TCDCA) were measured and linked with the electronic sensory data. The results showed that bitterness was the main flavor of TUDCA in BBP, saltiness and umami were the main flavor of TCDCA. The volatiles detected by E-nose and GC-MS were mainly aldehydes, ketones, alcohols, hydrocarbons, carboxylic acids, heterocyclic, lipids, and amines, mainly earthy, musty, coffee, bitter almond, burnt, pungent odor descriptions. Four different machine learning algorithms (backpropagation neural network, support vector machine, K-nearest neighbor, and random forest) were used to identify BBP and its counterfeit, and the regression performance of these four algorithms was also evaluated. For qualitative identification, the algorithm of random forest has shown the best performance, with 100% accuracy, precision, recall and F1-score. Also, the random forest algorithm has the best R2 and the lowest RMSE in terms of quantitative prediction.


Assuntos
Nariz Eletrônico , Ursidae , Animais , Pós , Bile , Língua
5.
Anal Bioanal Chem ; 415(2): 345-356, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36350342

RESUMO

Bear bile powder (BBP) is one of the most famous traditional Chinese medicines derived from animals. It has a long history of medicinal use and is widely used in the treatment of hepatobiliary and ophthalmic diseases. Due to its similar morphological characterizations and chemical composition compared with other bile powders, it is difficult to accurately identify its authenticity. In addition, there are very few methods that could analyze the geographical origins of BBP. In this study, elemental analysis isotope ratio mass spectrometry (EA-IRMS) and inductively coupled plasma mass spectrometry (ICP-MS) were used to determine stable isotope ratios and elemental contents, respectively. Combined these variables with chemometrics, the discrimination models were established successfully for identifying the authenticity and geographical origins of BBP. Meanwhile, the discrimination markers were identified by calculating the variable importance for the projection (VIP) value of each variable. A total of 13 discrimination markers (δ13C, δ15N, C, Li, Mg, K, Ca, Cr, Ni, Zn, As, Se, and Sr) were used to further establish the fingerprint of BBP. According to similarity analysis, the authenticity and geographical origins of BBP could be identified without chemometrics. In conclusion, the present study established a reliable method for authenticity identification and origin traceability of BBP, which will provide references for the quality control of bile medicines.


Assuntos
Ursidae , Animais , Pós , Bile , Isótopos/química , Espectrometria de Massas/métodos
6.
Chem Biodivers ; 20(3): e202201109, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36760194

RESUMO

Bear bile powder (BBP) is a rare animal-derived traditional Chinese medicine, and it has been widely used to treat visual disorders and hepatobiliary diseases in East Asia. However, there is still a lack of reliable quality control methods for BBP. This study was designed to establish a comprehensive quality map of BBP based on bile acids. High-performance liquid chromatography coupled with charged aerosol detector (HPLC-CAD) was used for fingerprint establishment and quantitative analysis of BBP. The similarities of HPLC-CAD chromatograms for 50 batches of BBP were more than 0.95, while the similarities of reference chromatograms between 6 other animal bile and BBP were low than 0.7. Additionally, five bile acids in BBP, including tauroursodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid, ursodesoxycholic acid, and chenodeoxycholic acid, were simultaneously quantified. This method has been validated with good regression as well as satisfactory precision, sensitivity, stability, repeatability, and accuracy. Using this method, the contents of five bile acids in BBP samples from five producing areas were determined and compared. Furthermore, Fisher linear discriminant analysis was performed to discriminate the geographic origins of BBP. The result demonstrated that HPLC-CAD fingerprint combined with multi-components quantification is an effective and reliable method for quality control of BBP, it could be a meaningful reference for the quality evaluation of medicinal bile.


Assuntos
Medicamentos de Ervas Chinesas , Ursidae , Animais , Bile/química , Ácidos e Sais Biliares/análise , Quimiometria , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Pós/análise , Ursidae/metabolismo
7.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838565

RESUMO

The bile acid transport system is a natural physiological cycling process between the liver and the small intestine, occurring approximately 6-15 times during the day. There are various bile acid transporter proteins on hepatocytes that specifically recognize bile acids for transport. Therefore, in this paper, a novel liposome, cholic acid-modified irinotecan hydrochloride liposomes (named CA-CPT-11-Lip), was prepared based on the "Trojan horse" strategy. The liposomes preparation process was optimized, and some important quality indicators were investigated. The distribution of irinotecan hydrochloride in mice was then analyzed by high-performance liquid chromatography (HPLC), and the toxicity of liposomes to hepatocellular carcinoma cells (HepG-2) was evaluated in vitro. As a result, CA-CPT-11-Lip was successfully prepared. It was spherical with a particle size of 154.16 ± 4.92 nm, and the drug loading and encapsulation efficiency were 3.72 ± 0.04% and 82.04 ± 1.38%, respectively. Compared with the conventional liposomes (without cholic acid modification, named CPT-11-Lip), CA-CPT-11-Lip had a smaller particle size and higher encapsulation efficiency, and the drug accumulation in the liver was more efficient, enhancing the anti-hepatocellular carcinoma activity of irinotecan hydrochloride. The novel nanoliposome modified by cholic acid may help to expand the application of irinotecan hydrochloride in the treatment of hepatocellular carcinoma and construct the drug delivery system mode of drug liver targeting.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Irinotecano , Lipossomos/química , Ácidos e Sais Biliares , Sistemas de Liberação de Medicamentos , Ácidos Cólicos
8.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298829

RESUMO

Due to the presence of physiological barriers, it is difficult to achieve the desired therapeutic efficacy of drugs; thus, it is necessary to develop an efficient drug delivery system that enables advanced functions such as self-monitoring. Curcumin (CUR) is a naturally functional polyphenol whose effectiveness is limited by poor solubility and low bioavailability, and its natural fluorescent properties are often overlooked. Therefore, we aimed to improve the antitumor activity and drug uptake monitoring by simultaneously delivering CUR and 5-Fluorouracil (5-FU) in the form of liposomes. In this study, dual drug-loaded liposomes (FC-DP-Lip) encapsulating CUR and 5-FU were prepared by the thin-film hydration method; their physicochemical properties were characterized; and their biosafety, drug uptake distribution in vivo, and tumor cell toxicity were evaluated. The results showed that the nanoliposome FC-DP-Lip showed good morphology, stability, and drug encapsulation efficiency. It showed good biocompatibility, with no side effects on zebrafish embryonic development. In vivo uptake in zebrafish showed that FC-DP-Lip has a long circulation time and presents gastrointestinal accumulation. In addition, FC-DP-Lip was cytotoxic against a variety of cancer cells. This work showed that FC-DP-Lip nanoliposomes can enhance the toxicity of 5-FU to cancer cells, demonstrating safety and efficiency, and enabling real-time self-monitoring functions.


Assuntos
Antineoplásicos , Curcumina , Nanopartículas , Animais , Curcumina/farmacologia , Curcumina/química , Lipossomos/química , Fluoruracila/farmacologia , Peixe-Zebra , Antineoplásicos/farmacologia , Antineoplásicos/química , Tamanho da Partícula , Nanopartículas/química
9.
PLoS Biol ; 17(8): e3000417, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31469831

RESUMO

Threatening sounds can elicit a series of defensive behavioral reactions in animals for survival, but the underlying neural substrates are not fully understood. Here, we demonstrate a previously unexplored neural pathway in mice that projects directly from the auditory cortex (ACx) to the lateral periaqueductal gray (lPAG) and controls noise-evoked defensive behaviors. Electrophysiological recordings showed that the lPAG could be excited by a loud noise that induced an escape-like behavior. Trans-synaptic viral tracing showed that a great number of glutamatergic neurons, rather than GABAergic neurons, in the lPAG were directly innervated by those in layer V of the ACx. Activation of this pathway by optogenetic manipulations produced a behavior in mice that mimicked the noise-evoked escape, whereas inhibition of the pathway reduced this behavior. Therefore, our newly identified descending pathway is a novel neural substrate for noise-evoked escape and is involved in controlling the threat-related behavior.


Assuntos
Córtex Auditivo/fisiologia , Reação de Fuga/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Animais , Córtex Auditivo/metabolismo , Percepção Auditiva/fisiologia , Comportamento Animal/fisiologia , Mecanismos de Defesa , Aminoácidos Excitatórios/fisiologia , Neurônios GABAérgicos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Optogenética/métodos , Substância Cinzenta Periaquedutal/fisiologia , Som
10.
Proc Natl Acad Sci U S A ; 116(13): 6397-6406, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850520

RESUMO

Memory is stored in neural networks via changes in synaptic strength mediated in part by NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here we show that a cholecystokinin (CCK)-B receptor (CCKBR) antagonist blocks high-frequency stimulation-induced neocortical LTP, whereas local infusion of CCK induces LTP. CCK-/- mice lacked neocortical LTP and showed deficits in a cue-cue associative learning paradigm; and administration of CCK rescued associative learning deficits. High-frequency stimulation-induced neocortical LTP was completely blocked by either the NMDAR antagonist or the CCKBR antagonist, while application of either NMDA or CCK induced LTP after low-frequency stimulation. In the presence of CCK, LTP was still induced even after blockade of NMDARs. Local application of NMDA induced the release of CCK in the neocortex. These findings suggest that NMDARs control the release of CCK, which enables neocortical LTP and the formation of cue-cue associative memory.


Assuntos
Colecistocinina/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Córtex Auditivo/metabolismo , Comportamento Animal , Colecistocinina/genética , Estimulação Elétrica , Córtex Entorrinal/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metilaspartato/metabolismo , Neocórtex/metabolismo , Neurônios/metabolismo , Ratos Sprague-Dawley , Receptor de Colecistocinina B/efeitos dos fármacos , Receptor de Colecistocinina B/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sinapses/metabolismo
11.
Sensors (Basel) ; 22(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35808236

RESUMO

To ensure the efficient operation of large-scale networks, the flow scheduling in the software defined network (SDN) requires the matching time and memory overhead of rule matching to be as low as possible. To meet the requirement, we solve the rule matching problem by integrating machine learning methods, including recurrent neural networks, reinforcement learning, and decision trees. We first describe the SDN rule matching problem and transform it into a heterogeneous integrated learning problem. Then, we design and implement an SDN flow forwarding rule matching algorithm based on heterogeneous integrated learning, referred to as RMHIL. Finally, we compare RMHIL with two existing algorithms, and the comparative experimental results show that RMHIL has advantages in matching time and memory overhead.


Assuntos
Algoritmos , Software , Redes Neurais de Computação
12.
Sensors (Basel) ; 22(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36236790

RESUMO

Multi-path transmission can well solve the data transmission reliability problems and life cycle problems caused by single-path transmission. However, the accuracy of the routing scheme generated by the existing multi-path routing algorithms is difficult to guarantee. In order to improve the accuracy of the multi-path routing scheme, this paper innovatively proposes a multi-path routing algorithm for a wireless sensor network (WSN) based on the evaluation. First, we design and implement the real-time evaluation algorithm based on semi-supervised learning (RESL). We prove that RESL is better in evaluation time and evaluation accuracy through comparative experiments. Then, we combine RESL to design and implement the multi-path routing algorithm for wireless sensor networks based on semi-supervised learning (MRSSL). Then, we prove that MRSSL has advantages in improving the accuracy of the multi-path routing scheme through comparative experiments.

13.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743311

RESUMO

(1) Background: Curcumin (CUR) and tetrandrine (TET) are natural compounds with various bioactivities, but have problems with low solubility, stability, and absorption rate, resulting in low bioavailability, and limited applications in food, medicine, and other fields. It is very important to improve the solubility while maintaining the high activity of drugs. Liposomes are micro-vesicles synthesized from cholesterol and lecithin. With high biocompatibility and biodegradability, liposomes can significantly improve drug solubility, efficacy, and bioavailability. (2) Methods: In this work, CUR and TET were encapsulated with nano-liposomes and g DSPE-MPEG 2000 (DP)was added as a stabilizer to achieve better physicochemical properties, biosafety, and anti-tumor effects. (3) Results: The nano-liposome (CT-DP-Lip) showed stable particle size (under 100 nm) under different conditions, high solubility, drug encapsulation efficiency (EE), loading capacity (LC), release rate in vitro, and stability. In addition, in vivo studies demonstrated CT-DP-Lip had no significant toxicity on zebrafish. Tumor cytotoxicity test showed that CT-DP-Lip had a strong inhibitory effect on a variety of cancer cells. (4) Conclusions: This work showed that nano-liposomes can significantly improve the physical and chemical properties of CUR and TET and make them safer and more efficient.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Curcumina , Neoplasias , Animais , Benzilisoquinolinas , Curcumina/química , Curcumina/farmacologia , Portadores de Fármacos/química , Lipossomos/química , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Peixe-Zebra
14.
J Neurosci ; 40(10): 2025-2037, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31980587

RESUMO

Plastic change in neuronal connectivity is the foundation of memory encoding. It is not clear whether the changes during anesthesia can alter subsequent behavior. Here, we demonstrated that in male rodents under anesthesia, a visual stimulus (VS) was associated with electrical stimulation of the auditory cortex or natural auditory stimulus in the presence of cholecystokinin (CCK), which guided the animals' behavior in a two-choice auditory task. Auditory neurons became responsive to the VS after the pairings. Moreover, high-frequency stimulation of axon terminals of entorhinal CCK neurons in the auditory cortex enabled LTP of the visual response in the auditory cortex. Such pairing during anesthesia also generated VS-induced freezing in an auditory fear conditioning task. Finally, we verified that direct inputs from the entorhinal CCK neurons and the visual cortex enabled the above neural plasticity in the auditory cortex. Our findings suggest that CCK-enabled visuoauditory association during anesthesia can be translated to the subsequent behavior action.SIGNIFICANCE STATEMENT Our study provides strong evidence for the hypothesis that cholecystokinin plays an essential role in the formation of cross-modal associative memory. Moreover, we demonstrated that an entorhinal-neocortical circuit underlies such neural plasticity, which will be helpful to understand the mechanisms of memory formation and retrieval in the brain.


Assuntos
Colecistocinina/metabolismo , Córtex Entorrinal/fisiologia , Memória/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Estimulação Acústica , Anestesia , Animais , Aprendizagem por Associação/fisiologia , Córtex Auditivo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Estimulação Luminosa , Ratos , Ratos Sprague-Dawley , Córtex Visual/fisiologia
15.
Appl Opt ; 60(23): 6769-6775, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34613157

RESUMO

Imaging probes are an important consideration for any type of contrast agent-based imaging method. X-ray luminescence imaging (XLI) and x-ray luminescence computed tomography (XLCT) are both contrast agent-based imaging methods that employ x-ray excitable scintillating imaging probes that emit light to be measured for optical imaging. In this work, we compared the performance of several select imaging probes, both commercial and self-synthesized, for application in XLI/XLCT imaging. Commercially available cadmium telluride quantum dots (CdTe QDs) and europium-doped gadolinium oxysulfide (GOS:Eu) microphosphor as well as synthesized NaGdF4 nanophosphors doped with either europium or terbium were compared through their x-ray luminescence emission spectra, luminescence intensity, and also by performing XLCT scans using phantoms embedded with each of the imaging probes. Each imaging probe displayed a unique emission spectrum that was ideal for deep-tissue optical imaging. In terms of luminescence intensity, due to the large particle size, GOS:Eu had the brightest emission, followed by NaGdF4:Tb, NaGdF4:Eu, and finally the CdTe QDs. Lastly, XLCT scans showed that each imaging probe could be reconstructed with good shape and location accuracy.


Assuntos
Compostos de Cádmio/química , Meios de Contraste/química , Fluoretos/química , Gadolínio/química , Luminescência , Telúrio/química , Tomografia Computadorizada por Raios X/métodos , Érbio/química , Európio/química , Processamento de Imagem Assistida por Computador/métodos , Imagem Óptica/métodos , Imagens de Fantasmas , Pontos Quânticos
16.
J Biol Chem ; 293(12): 4445-4455, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29386354

RESUMO

During neurogenesis, neural patterning is a critical step during which neural progenitor cells differentiate into neurons with distinct functions. However, the molecular determinants that regulate neural patterning remain poorly understood. Here we optimized the "dual SMAD inhibition" method to specifically promote differentiation of human pluripotent stem cells (hPSCs) into forebrain and hindbrain neural progenitor cells along the rostral-caudal axis. We report that neural patterning determination occurs at the very early stage in this differentiation. Undifferentiated hPSCs expressed basal levels of the transcription factor orthodenticle homeobox 2 (OTX2) that dominantly drove hPSCs into the "default" rostral fate at the beginning of differentiation. Inhibition of glycogen synthase kinase 3ß (GSK3ß) through CHIR99021 application sustained transient expression of the transcription factor NANOG at early differentiation stages through Wnt signaling. Wnt signaling and NANOG antagonized OTX2 and, in the later stages of differentiation, switched the default rostral cell fate to the caudal one. Our findings have uncovered a mutual antagonism between NANOG and OTX2 underlying cell fate decisions during neural patterning, critical for the regulation of early neural development in humans.


Assuntos
Diferenciação Celular , Linhagem da Célula , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neurais/citologia , Neurônios/citologia , Fatores de Transcrição Otx/metabolismo , Células-Tronco Pluripotentes/citologia , Padronização Corporal , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Colículos Inferiores/citologia , Colículos Inferiores/metabolismo , Núcleos da Rafe do Mesencéfalo/citologia , Núcleos da Rafe do Mesencéfalo/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Neurônios/metabolismo , Células-Tronco Pluripotentes/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Rombencéfalo/citologia , Rombencéfalo/metabolismo
17.
Small ; : e1802226, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30028578

RESUMO

Lithium metal has attracted much research interest as a possible anode material for high-energy-density lithium-ion batteries in recent years. However, its practical use is severely limited by uncontrollable deposition, volume expansion, and dendrite formation. Here, a metastable state of Li, Li cluster, that forms between LiC6 and Li dendrites when over-lithiating carbon cloth (CC) is discovered. The Li clusters with sizes in the micrometer and submicrometer scale own outstanding electrochemical reversibility between Li+ and Li, allowing the CC/Li clusters composite anode to demonstrate a high first-cycle coulombic efficiency (CE) of 94.5% ± 1.0% and a stable CE of 99.9% for 160 cycles, which is exceptional for a carbon/lithium composite anode. The CC/Li clusters composite anode shows a high capacity of 3 mAh cm-2 contributed by both Li+ intercalation and Li-cluster formation, and excellent cycling stability with a signature sloping voltage profile. Furthermore, the CC/Li clusters composite anode can be assembled into full cells without precycling or prelithiation. The full cells containing bare CC as the anode and excessive LiCoO2 as the cathode exhibit high specific capacity and good cyclic stability in 200 cycles, stressing the advantage of controlled formation of Li clusters.

18.
Amino Acids ; 48(2): 349-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26371055

RESUMO

Glycine receptors (GlyRs) permeable to chloride only mediate tonic inhibition in the cerebral cortex where glycinergic projection is completely absent. The functional modulation of GlyRs was largely studied in subcortical brain regions with glycinergic transmissions, but the function of cortical GlyRs was rarely addressed. Serotonin could broadly modulate many ion channels through activating 5-HT2 receptor, but whether cortical GlyRs are subjected to serotonergic modulation remains unexplored. The present study adopted patch clamp recordings to examine functional regulation of strychnine-sensitive GlyRs currents in cultured cortical neurons by DOI (2,5-Dimethoxy-4-iodoamphetamine), a 5-HT2A/C receptor agonist. DOI caused a concentration-dependent reduction of GlyR currents with unchanged reversal potential. This reduction was blocked by the selective receptor antagonists (ritanserin and risperidone) and G protein inhibitor (GDP-ß-s) demonstrated that the reducing effect of DOI on GlyR current required the activation of 5-HT2A/C receptors. Strychnine-sensitive tonic currents revealed the inhibitory tone mediated by nonsynaptic GlyRs, and DOI similarly reduced the tonic inhibition. The impaired microtube-dependent trafficking or clustering of GlyRs was thought to be involved in that nocodazole as a microtube depolymerizing drug largely blocked the inhibition mediated by 5-HT2A/C receptors. Our results suggested that activation of 5-HT2A/C receptors might suppress cortical tonic inhibition mediated by GlyRs, and the findings would provide important insight into serotonergic modulation of tonic inhibition mediated by GlyRs, and possibly facilitate to develop the therapeutic treatment of neurological diseases such as tinnitus through regulating cortical GlyRs.


Assuntos
Córtex Auditivo/metabolismo , Neurônios/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Receptores de Glicina/metabolismo , Anfetaminas/farmacologia , Animais , Células Cultivadas , Proteínas de Ligação ao GTP/metabolismo , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacologia , Canais Iônicos/metabolismo , Microtúbulos/metabolismo , Nocodazol/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Risperidona/farmacologia , Ritanserina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Estricnina/farmacologia , Tionucleotídeos/farmacologia , Moduladores de Tubulina/farmacologia
19.
J Neurosci ; 33(24): 9963-74, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23761892

RESUMO

Damage to the medial temporal lobe impairs the encoding of new memories and the retrieval of memories acquired immediately before the damage in human. In this study, we demonstrated that artificial visuoauditory memory traces can be established in the rat auditory cortex and that their encoding and retrieval depend on the entorhinal cortex of the medial temporal lobe in the rat. We trained rats to associate a visual stimulus with electrical stimulation of the auditory cortex using a classical conditioning protocol. After conditioning, we examined the associative memory traces electrophysiologically (i.e., visual stimulus-evoked responses of auditory cortical neurons) and behaviorally (i.e., visual stimulus-induced freezing and visual stimulus-guided reward retrieval). The establishment of a visuoauditory memory trace in the auditory cortex, which was detectable by electrophysiological recordings, was achieved over 20-30 conditioning trials and was blocked by unilateral, temporary inactivation of the entorhinal cortex. Retrieval of a previously established visuoauditory memory was also affected by unilateral entorhinal cortex inactivation. These findings suggest that the entorhinal cortex is necessary for the encoding and involved in the retrieval of artificial visuoauditory memory in the auditory cortex, at least during the early stages of memory consolidation.


Assuntos
Córtex Auditivo/fisiologia , Mapeamento Encefálico , Córtex Entorrinal/fisiologia , Rememoração Mental/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Córtex Auditivo/citologia , Córtex Auditivo/lesões , Condicionamento Clássico/fisiologia , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/efeitos adversos , Extinção Psicológica , Feminino , Lateralidade Funcional , Masculino , Vias Neurais/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Quinoxalinas/efeitos adversos , Ratos , Ratos Sprague-Dawley , Recompensa , Fatores de Tempo
20.
Neurobiol Learn Mem ; 116: 155-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25452085

RESUMO

As the gateway between the hippocampal system and the neocortex, the entorhinal cortex (EC) is hypothesized to be the hub in which the transformation of recent memory to remote memory is processed. We explored the role of the EC on the retrieval of recent and remote associative fear memory. A within-subject approach was adopted to compare the freezing rates of rats in EC intact and EC inactivated conditions following trace fear conditioning. The EC was inactivated by infusing an AMPA antagonist. The fear conditioning used a combined visual and auditory conditioned stimulus with a foot shock. On week 1 following the conditioning, the rats in the EC intact condition exhibited a freezing rate of 92.4±9.5% in response to the light stimulus compared with a 6.3±7.9% freezing rate in the EC inactivated condition. The freezing rates were 87.0±17.8% and 4.7±6.5% on week 2 in the EC intact and inactivated conditions, respectively. These results indicate that the EC participates in the retrieval of associative memory. Extinction of the fear memory was observed in the EC intact condition, as the mean freezing rate decreased to 62.7±23.0% on week 4 and 41.2±26.4% on week 5. However, the freezing rate increased to 26.8±14.2% on week 4 and 22.3±14.4% on week 5 in the EC inactivated condition. The normalized dependence of fear memory retrieval on the EC was 93.2±8.3% on week 1, and significantly decreased on weeks 4 and 5. In summary, the retrieval of associative memory depends on the EC, but this dependence decreases over time.


Assuntos
Aprendizagem por Associação/fisiologia , Condicionamento Psicológico/fisiologia , Córtex Entorrinal/fisiologia , Medo/fisiologia , Memória/fisiologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Sinais (Psicologia) , Córtex Entorrinal/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Memória/efeitos dos fármacos , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA