RESUMO
Phyllodiumpulchellum has been traditionally used as a medicinal herb because of its health-promoting effects, such as its hepatoprotective and antioxidant activities. In the present study, the petroleum ether fraction, ethyl acetate fraction, n-butanol fraction, and aqueous fraction were successively obtained from the ethanol extract of P. pulchellum. Two fractions, ethyl acetate fraction and n-butanol fraction, were found to display hepatoprotective and antioxidant activities. Further chemical investigation of the active fractions led to the isolation of its main constituents, including 11 flavonoids (1â»11) and 8 indole alkaloids (12â»19). There were 9 flavonoids (1â»9) that were obtained from the ethyl acetate fraction, and 2 flavonoids (10 and 11) and 8 alkaloids (12â»19) from the n-butanol fraction. Compounds 1â»11 and 16â»19 were isolated for the first time from P. pulchellum, and 1, 2, 8, 11, and 18 were obtained from the genus Phyllodium initially. Subsequently, the isolated compounds were evaluated for their in vitro hepatoprotective effects on the human normal hepatocyte cell line L-O2 injured by d-galactosamine and radical scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH). The flavonoids (-)-epigallocatechin (5) and (-)-epicatechin (6) exhibited prominent hepatoprotective activities with higher cell viability values (65.53% and 62.40% at 10 µM·mL-1, respectively) than the positive control, silymarin (61.85% at 10 µM·mL-1). In addition, compared with the positive control of vitamin C (IC50: 5.14 µg·mL-1), (-)-gallocatechin (3) and (-)-epigallocatechin (5) exhibited stronger antioxidant activities with IC50 values of 3.80 and 3.97 µg·mL-1, respectively. Furthermore, the total flavonoids from P. pulchellum were characterized using a high-performance liquid chromatography-linear ion trap quadrupole-Orbitrap-mass spectrometry (HPLC-LTQ-Orbitrap-MS). In total, 34 flavonoids were tentatively identified, which had not been previously reported from P. pulchellum. In addition, we performed a semi-quantitative analysis of the isolated flavonoids. The contents of compounds 1â»11 were 3.88, 17.73, 140.35, 41.93, 27.80, 4.34, 0.01, 0.20, 9.67, 795.85, and 5.23 µg·g-1, respectively. In conclusion, this study revealed that the flavonoids that were isolated from P. pulchellum showed hepatoprotective and antioxidant activities, indicating that, besides alkaloids, the flavonoids should be the potential pharmacodynamic ingredients that are responsible for the hepatoprotective and antioxidant activities of P. pulchellum.
Assuntos
Antioxidantes/farmacologia , Fabaceae/química , Fígado/efeitos dos fármacos , Antioxidantes/química , Linhagem Celular , Cromatografia Líquida de Alta Pressão/métodos , Hepatócitos/efeitos dos fármacos , Humanos , Espectrometria de Massas/métodos , Relação Estrutura-AtividadeRESUMO
Currently, DNA topoisomerase I (Topo I) inhibitors constitute a family of antitumor agents with demonstrated clinical effects on human malignancies. However, the clinical uses of these agents have been greatly limited due to their severe toxic effects. Therefore, it is urgent to find and develop novel low toxic Topo I inhibitors. In recent years, during our ongoing research on natural antitumor products, a collection of low cytotoxic or non-cytotoxic compounds with various structures were identified from marine invertebrates, plants, and their symbiotic microorganisms. In the present study, new Topo I inhibitors were discovered from low cytotoxic and non-cytotoxic natural products by virtual screening with docking simulations in combination with bioassay test. In total, eight potent Topo I inhibitors were found from 138 low cytotoxic or non-cytotoxic compounds from coral-derived fungi and plants. All of these Topo I inhibitors demonstrated activities against Topo I-mediated relaxation of supercoiled DNA at the concentrations of 5-100 µM. Notably, the flavonoids showed higher Topo I inhibitory activities than other compounds. These newly discovered Topo I inhibitors exhibited structurally diverse and could be considered as a good starting point for the development of new antitumor lead compounds.
Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia , Animais , Antozoários/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Fungos/química , Humanos , Plantas/química , Relação Estrutura-AtividadeRESUMO
The Coleoptera (beetles) exhibits tremendous morphological, ecological, and behavioral diversity. To better understand the phylogenetics and evolution of beetles, we sequenced three complete mitogenomes from two families (Cleridae and Meloidae), which share conserved mitogenomic features with other completely sequenced beetles. We assessed the influence of six datasets and three inference methods on topology and nodal support within the Coleoptera. We found that both Bayesian inference and maximum likelihood with homogeneous-site models were greatly affected by nucleotide compositional heterogeneity, while the heterogeneous-site mixture model in PhyloBayes could provide better phylogenetic signals for the Coleoptera. The amino acid dataset generated more reliable tree topology at the higher taxonomic levels (i.e. suborders and series), where the inclusion of rRNA genes and the third positions of protein-coding genes improved phylogenetic inference at the superfamily level, especially under a heterogeneous-site model. We recovered the suborder relationships as (Archostemata+Adephaga)+(Myxophaga+Polyphaga). The series relationships within Polyphaga were recovered as (Scirtiformia+(Elateriformia+((Bostrichiformia+Scarabaeiformia+Staphyliniformia)+Cucujiformia))). All superfamilies within Cucujiformia were recovered as monophyletic. We obtained a cucujiform phylogeny of (Cleroidea+(Coccinelloidea+((Lymexyloidea+Tenebrionoidea)+(Cucujoidea+(Chrysomeloidea+Curculionoidea))))). This study showed that although tree topologies were sensitive to data types and inference methods, mitogenomic data could provide useful information for resolving the Coleoptera phylogeny at various taxonomic levels by using suitable datasets and heterogeneous-site models.
Assuntos
Genoma Mitocondrial , Animais , Teorema de Bayes , Besouros/classificação , Besouros/genética , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Filogenia , RNA Ribossômico/classificação , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA de Transferência/classificação , RNA de Transferência/genética , RNA de Transferência/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
BACKGROUND: Insect mitochondrial genomes (mitogenomes) are the most extensively used genetic marker for evolutionary and population genetics studies of insects. The Pentatomoidea superfamily is economically important and the largest superfamily within Pentatomomorpha with over 7,000 species. To better understand the diversity and evolution of pentatomoid species, we sequenced and annotated the mitogenomes of Eurydema gebleri and Rubiconia intermedia, and present the first comparative analysis of the 11 pentatomoid mitogenomes that have been sequenced to date. RESULTS: We obtained the complete mitogenome of Eurydema gebleri (16,005 bp) and a nearly complete mitogenome of Rubiconia intermedia (14,967 bp). Our results show that gene content, gene arrangement, base composition, codon usage, and mitochondrial transcription termination factor sequences are highly conserved in pentatomoid species, especially for species in the same family. Evolutionary rate analyses of protein-coding genes reveal that the highest and lowest rates are found in atp8 and cox1 and distinctive evolutionary patterns are significantly correlated with the G + C content of genes. We inferred the secondary structures for two rRNA genes for eleven pentatomoid species, and identify some conserved motifs of RNA structures in Pentatomidea. All tRNA genes in pentatomoid mitogenomes have a canonical cloverleaf secondary structure, except for two tRNAs (trnS1 and trnV) which appear to lack the dihydrouridine arm. Regions that are A + T-rich have several distinct characteristics (e.g. size variation and abundant tandem repeats), and have potential as species or population level molecular markers. Phylogenetic analyses based on mitogenomic data strongly support the monophyly of Pentatomoidea, and the estimated phylogenetic relationships are: (Urostylididae + (Plataspidae + (Pentatomidae + (Cydnidae + (Dinidoridae + Tessaratomidae))))). CONCLUSIONS: This comparative mitogenomic analysis sheds light on the architecture and evolution of mitogenomes in the superfamily Pentatomoidea. Mitogenomes can be effectively used to resolve phylogenetic relationships of pentatomomorphan insects at various taxonomic levels. Sequencing more mitogenomes at various taxonomic levels, particularly from closely related species, will improve the annotation accuracy of mitochondrial genes, as well as greatly enhance our understanding of mitogenomic evolution and phylogenetic relationships in pentatomoids.
Assuntos
Genoma de Inseto/genética , Genoma Mitocondrial/genética , Heterópteros/genética , Animais , Composição de Bases/genética , Sequência de Bases , Códon/genética , Evolução Molecular , Ordem dos Genes/genética , Genes Mitocondriais/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética , Terminação da Transcrição Genética/fisiologiaRESUMO
Grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) are the most damaging pests to alpine meadows in the Qinghai-Tibetan Plateau (QTP). Here, we conducted extensive sampling from 39 geographic populations covering almost the entire distribution of the eight QTP Gynaephora (Hübner) species to investigate phylogeographic patterns and speciation based on two mitochondrial genes (COI and ND5). A total of 40 haplotypes were detected in the 39 populations, with >70% of all haplotypes not shared between populations. The monophyletic QTP Gynaephora migrated from non-QTP regions during the Pliocene, corresponding to the uplift of the QTP, suggesting a mode of transport into the QTP. Among the eight QTP Gynaephora species described by morphological characteristics, two species (G. alpherakii and G. menyuanensis) were recovered as monophyletic groups (Clades B and C), while the remaining six formed two monophyletic clades: Clade A (G. qinghaiensis, G. jiuzhiensis, and G. qumalaiensis) and Clade D (G. aureata, G. ruoergensis, and G. minora). These results suggested that the number of the QTP Gynaephora species may be overestimated and further studies based on both morphological and nuclear gene data are needed. Genetic differentiation and speciation of the QTP Gynaephora were likely driven by the QTP uplifts and associated climate fluctuations during the Pleistocene, indicated by divergence time estimation, suggesting that isolation and subsequent divergence was the dominant mode of speciation. The Sanjiangyuan region (i.e., Clade A, characterized by high genetic diversity) may have been a glacial refugium of the QTP Gynaephora, as supported by analyses of gene flow and biogeography. High levels of genetic diversity were found in QTP Gynaephora, without population expansion, which may explain the high-altitude adaptation and outbreaks of grassland caterpillars in alpine meadows of the QTP. This study provides the largest phylogeographic analysis of QTP Gynaephora and improves our understanding of the diversity and speciation of QTP insects.
RESUMO
We determined the complete mitogenome of Pyrrhocoris tibialis (Hemiptera: Heteroptera: Pyrrhocoridae) to better understand the diversity and phylogeny within Pentatomomorpha, which is the second largest infra-order of Heteroptera. Gene content, gene arrangement, nucleotide composition, codon usage, ribosomal RNA (rRNA) structures, and sequences of the mitochondrial transcription termination factor were well conserved in Pyrrhocoroidea. Different protein-coding genes have been subject to different evolutionary rates correlated with the G + C content. The size of control regions (CRs) was highly variable among mitogenomes of three sequenced Pyrrhocoroidea species, with the P. tibialis CR being the largest. All the transfer RNA genes found in Pyrrhocoroidea had the typical clover leaf secondary structure, except for trnS1 (AGN), which lacked the dihydrouridine arm and possessed an unusual anticodon stem (9 bp vs. the normal 5 bp). A total of three different phylogenetic relationships among the five super-families of Pentatomomorpha were obtained using three analytical methods (MrBayes and RAxML under site-homogeneous models and PhyloBayes under a site-heterogeneous CAT + GTR model) and two mitogenomic datasets (nucleotides and amino acids). The tree topology test using seven methods statistically supported a phylogeny of (Aradoidea + (Pentatomoidea + (Lygaeoidea + (Pyrrhocoroidea + Coreoidea)))) as the best topology, as recognized by both RAxML and MrBayes based on the two datasets.
Assuntos
Genoma de Inseto , Genoma Mitocondrial , Hemípteros/genética , Filogenia , Animais , Composição de Bases , Hemípteros/classificação , Fases de Leitura Aberta , RNA Ribossômico/genética , RNA de Transferência/genéticaRESUMO
The complete mitochondrial genome (mitogenome) of Poratrioza sinica (Hemiptera: Psyllidae) has been sequenced and annotated in this study. This mitogenome is 14,863 bp in length with an A + T content of 72.0%, and contains 37 typical animal mitochondrial genes that are arranged in the same order as that of the putative ancestral insect mitogenome. All protein-coding genes start with ATN codons except for nad5, which uses TTG as the initial codon. All the transfer RNA genes have the typical cloverleaf structure, except for trnS1 (AGN) which lacks the dihydrouridine (DHU) arm. The control region is 700 bp in length with 82.4% A + T content. This is the second completely sequenced mitogenome from the family Psyllidae of Hemiptera.
Assuntos
Genoma Mitocondrial , Hemípteros/genética , Animais , Composição de Bases/genética , Pareamento de Bases/genética , Sequência de Bases , Anotação de Sequência Molecular , RNA de Transferência/genéticaRESUMO
The complete mitochondrial genome (mitogenome) of Gynaephora alpherakii (Lepidoptera: Lymantriidae) has been sequenced and annotated in this study. This mitogenome is 15,755 bp in length with an A + T content of 81.44%, and contains 37 typical animal mitochondrial genes that are arranged in the same order as that of other lepidopteran species. All protein-coding genes (PCGs) start with a typical ATN codon, with the exception of cox1 which uses CGA as the initial codon. All of the 22 transfer RNA genes present the typical clover leaf secondary structure. The A + T-rich region is located between rrnS and trnM with a length of 449 bp, and contains a 19 bp poly-T stretch as found in other lepidopteran mitogenomes. This is the third completely sequenced mitogenome from the family Lymantriidae of Lepidoptera.
Assuntos
Genoma Mitocondrial , Mariposas/genética , Animais , Composição de Bases , Códon , DNA Mitocondrial/química , DNA Mitocondrial/isolamento & purificação , DNA Mitocondrial/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , RNA de Transferência/química , RNA de Transferência/isolamento & purificação , RNA de Transferência/metabolismo , Análise de Sequência de DNARESUMO
Insect mitochondrial genome (mitogenome) are the most extensively used genetic information for molecular evolution, phylogenetics and population genetics. Pentatomomorpha (>14,000 species) is the second largest infraorder of Heteroptera and of great economic importance. To better understand the diversity and phylogeny within Pentatomomorpha, we sequenced and annotated the complete mitogenome of Corizus tetraspilus (Hemiptera: Rhopalidae), an important pest of alfalfa in China. We analyzed the main features of the C. tetraspilus mitogenome, and provided a comparative analysis with four other Coreoidea species. Our results reveal that gene content, gene arrangement, nucleotide composition, codon usage, rRNA structures and sequences of mitochondrial transcription termination factor are conserved in Coreoidea. Comparative analysis shows that different protein-coding genes have been subject to different evolutionary rates correlated with the G+C content. All the transfer RNA genes found in Coreoidea have the typical clover leaf secondary structure, except for trnS1 (AGN) which lacks the dihydrouridine (DHU) arm and possesses a unusual anticodon stem (9 bp vs. the normal 5 bp). The control regions (CRs) among Coreoidea are highly variable in size, of which the CR of C. tetraspilus is the smallest (440 bp), making the C. tetraspilus mitogenome the smallest (14,989 bp) within all completely sequenced Coreoidea mitogenomes. No conserved motifs are found in the CRs of Coreoidea. In addition, the A+T content (60.68%) of the CR of C. tetraspilus is much lower than that of the entire mitogenome (74.88%), and is lowest among Coreoidea. Phylogenetic analyses based on mitogenomic data support the monophyly of each superfamily within Pentatomomorpha, and recognize a phylogenetic relationship of (Aradoidea + (Pentatomoidea + (Lygaeoidea + (Pyrrhocoroidea + Coreoidea)))).
Assuntos
Genoma de Inseto , Genoma Mitocondrial , Hemípteros/genética , Filogenia , Animais , Composição de Bases/genética , Teorema de Bayes , Códon/genética , Evolução Molecular , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , Nucleotídeos/genética , Fases de Leitura Aberta/genética , RNA Ribossômico/genética , RNA de Transferência/química , RNA de Transferência/genética , Especificidade da EspécieRESUMO
Gynaephora (Lepidoptera Erebidae: Lymantriinae) is a small genus, consisting of 15 nominated species, of which eight species are endemic to the Qinghai-Tibetan Plateau (QTP). In this study, we employed both mitochondrial and nuclear loci to infer a molecular phylogeny for the eight QTP Gynaephora spp. We used the phylogeny to estimate divergence dates in a molecular dating analysis and to delimit species. This information allowed us to investigate associations between the diversification history of the eight QTP species and geological and climatic events. Phylogenetic analyses indicated that the eight QTP species formed a monophyletic group with strong supports in both Bayesian and maximum likelihood analyses. The low K2P genetic distances between the eight QTP species suggested that diversification occurred relatively quickly and recently. Out of the eight species, five species were highly supported as monophyletic, which were also recovered by species delimitation analyses. Samples of the remaining three species (G. aureata, G. rouergensis, and G. minora) mixed together, suggesting that further studies using extensive population sampling and comprehensive morphological approaches are necessary to clarify their species status. Divergence time estimation results demonstrated that the diversification and speciation of Gynaephora on the QTP began during the late Miocene/early Pliocene and was potentially affected by the QTP uplift and associated climate changes during this time.