Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 626(8000): 799-807, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326615

RESUMO

Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge1-3. For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway1-6. However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes. Here we introduce a method to connect GWAS variants to functions. This method links variants to genes using epigenomics data, links genes to pathways de novo using Perturb-seq and integrates these data to identify convergence of GWAS loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for coronary artery disease (CAD), and discover 43 CAD GWAS signals that converge on the cerebral cavernous malformation (CCM) signalling pathway. Two regulators of this pathway, CCM2 and TLNRD1, are each linked to a CAD risk variant, regulate other CAD risk genes and affect atheroprotective processes in endothelial cells. These results suggest a model whereby CAD risk is driven in part by the convergence of causal genes onto a particular transcriptional pathway in endothelial cells. They highlight shared genes between common and rare vascular diseases (CAD and CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signalling pathway. This approach will be widely useful for linking variants to functions for other common polygenic diseases.


Assuntos
Doença da Artéria Coronariana , Células Endoteliais , Estudo de Associação Genômica Ampla , Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Predisposição Genética para Doença/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Polimorfismo de Nucleotídeo Único , Epigenômica , Transdução de Sinais/genética , Herança Multifatorial
2.
Commun Biol ; 7(1): 87, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216744

RESUMO

Population-based association studies have identified many genetic risk loci for coronary artery disease (CAD), but it is often unclear how genes within these loci are linked to CAD. Here, we perform interaction proteomics for 11 CAD-risk genes to map their protein-protein interactions (PPIs) in human vascular cells and elucidate their roles in CAD. The resulting PPI networks contain interactions that are outside of known biology in the vasculature and are enriched for genes involved in immunity-related and arterial-wall-specific mechanisms. Several PPI networks derived from smooth muscle cells are significantly enriched for genetic variants associated with CAD and related vascular phenotypes. Furthermore, the networks identify 61 genes that are found in genetic loci associated with risk of CAD, prioritizing them as the causal candidates within these loci. These findings indicate that the PPI networks we have generated are a rich resource for guiding future research into the molecular pathogenesis of CAD.


Assuntos
Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/genética , Mapas de Interação de Proteínas , Redes Reguladoras de Genes , Loci Gênicos , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA