Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Dis Model Mech ; 17(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235578

RESUMO

Skeletal muscular diseases predominantly affect skeletal and cardiac muscle, resulting in muscle weakness, impaired respiratory function and decreased lifespan. These harmful outcomes lead to poor health-related quality of life and carry a high healthcare economic burden. The absence of promising treatments and new therapies for muscular disorders requires new methods for candidate drug identification and advancement in animal models. Consequently, the rapid screening of drug compounds in an animal model that mimics features of human muscle disease is warranted. Zebrafish are a versatile model in preclinical studies that support developmental biology and drug discovery programs for novel chemical entities and repurposing of established drugs. Due to several advantages, there is an increasing number of applications of the zebrafish model for high-throughput drug screening for human disorders and developmental studies. Consequently, standardization of key drug screening parameters, such as animal husbandry protocols, drug compound administration and outcome measures, is paramount for the continued advancement of the model and field. Here, we seek to summarize and explore critical drug treatment and drug screening parameters in the zebrafish-based modeling of human muscle diseases. Through improved standardization and harmonization of drug screening parameters and protocols, we aim to promote more effective drug discovery programs.


Assuntos
Doenças Musculares , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/fisiologia , Qualidade de Vida , Modelos Animais de Doenças , Doenças Musculares/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Músculos
2.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38106020

RESUMO

Mutations in the TANGO2 gene cause severe illness in humans, including life-threatening metabolic crises; however, the function of TANGO2 protein remains unknown. In a recent publication in Nature, Sun et al. proposed that TANGO2 helps transport haem within and between cells, from areas with high haem concentrations to those with lower concentrations. Caenorhabditis elegans has two versions of TANGO2 that Sun et al. called HRG-9 and HRG-10. They demonstrated that worms deficient in these proteins show increased survival upon exposure to a toxic haem analog, which Sun et al. interpreted as evidence of decreased haem uptake from intestinal cells into the rest of the organism. We repeated several experiments using the same C. elegans strain as Sun et al. and believe that their findings are better explained by reduced feeding behavior in these worms. We demonstrate that hrg-9 in particular is highly responsive to oxidative stress, independent of haem status. Our group also performed several experiments in yeast and zebrafish models of TANGO2 deficiency and was unable to replicate key findings from these models reported in Sun et al.'s original study. Overall, we believe there is insufficient evidence to support haem transport as the primary function for TANGO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA