Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611776

RESUMO

The aim of this case study was the evaluation of the selected metals' concentration, potential toxic compound identification, cytotoxicity analysis, estimation of the airborne dust concentration, biodiversity, and number of microorganisms in the environment (leachate, soil, air) of the biggest uncontrolled post-industrial landfills in Poland. Based on the results obtained, preliminary solutions for the future management of post-industrial objects that have become an uncontrolled landfill were indicated. In the air, the PM1 fraction dominated, constituting 78.1-98.2% of the particulate matter. Bacterial counts were in the ranges of 9.33 × 101-3.21 × 103 CFU m-3 (air), 1.87 × 105-2.30 × 106 CFU mL-1 (leachates), and 8.33 × 104-2.69 × 106 CFU g-1 (soil). In the air, the predominant bacteria were Cellulosimicrobium and Stenotrophomonas. The predominant fungi were Mycosphaerella, Cladosporium, and Chalastospora. The main bacteria in the leachates and soils were Acinetobacter, Mortierella, Proteiniclasticum, Caloramator, and Shewanella. The main fungi in the leachates and soils were Lindtneria. Elevated concentrations of Pb, Zn, and Hg were detected. The soil showed the most pronounced cytotoxic potential, with rates of 36.55%, 63.08%, and 100% for the A-549, Caco-2, and A-549 cell lines. Nine compounds were identified which may be responsible for this cytotoxic effect, including 2,4,8-trimethylquinoline, benzo(f)quinoline, and 1-(m-tolyl)isoquinoline. The microbiome included bacteria and fungi potentially metabolizing toxic compounds and pathogenic species.


Assuntos
Poeira , Mercúrio , Humanos , Células CACO-2 , Metais , Solo
2.
Molecules ; 28(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110794

RESUMO

This study aimed to assess the markers of chemical and microbiological contamination of the air at sport centers (e.g., the fitness center in Poland) including the determination of particulate matter, CO2, formaldehyde (DustTrak™ DRX Aerosol Monitor; Multi-functional Air Quality Detector), volatile organic compound (VOC) concentration (headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry), the number of microorganisms in the air (culture methods), and microbial biodiversity (high-throughput sequencing on the Illumina platform). Additionally the number of microorganisms and the presence of SARS-CoV-2 (PCR) on the surfaces was determined. Total particle concentration varied between 0.0445 mg m-3 and 0.0841 mg m-3 with the dominance (99.65-99.99%) of the PM2.5 fraction. The CO2 concentration ranged from 800 ppm to 2198 ppm, while the formaldehyde concentration was from 0.005 mg/m3 to 0.049 mg m-3. A total of 84 VOCs were identified in the air collected from the gym. Phenol, D-limonene, toluene, and 2-ethyl-1-hexanol dominated in the air at the tested facilities. The average daily number of bacteria was 7.17 × 102 CFU m-3-1.68 × 103 CFU m-3, while the number of fungi was 3.03 × 103 CFU m-3-7.34 × 103 CFU m-3. In total, 422 genera of bacteria and 408 genera of fungi representing 21 and 11 phyla, respectively, were detected in the gym. The most abundant bacteria and fungi (>1%) that belonged to the second and third groups of health hazards were: Escherichia-Shigella, Corynebacterium, Bacillus, Staphylococcus, Cladosporium, Aspergillus, and Penicillium. In addition, other species that may be allergenic (Epicoccum) or infectious (Acinetobacter, Sphingomonas, Sporobolomyces) were present in the air. Moreover, the SARS-CoV-2 virus was detected on surfaces in the gym. The monitoring proposal for the assessment of the air quality at a sport center includes the following markers: total particle concentration with the PM2.5 fraction, CO2 concentration, VOCs (phenol, toluene, and 2-ethyl-1-hexanol), and the number of bacteria and fungi.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Fungos Mitospóricos , Exposição Ocupacional , Exposição Ocupacional/análise , Dióxido de Carbono/análise , Microbiologia do Ar , COVID-19/epidemiologia , SARS-CoV-2 , Aerossóis e Gotículas Respiratórios , Fungos , Bactérias , Material Particulado/análise , Fenóis/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental
3.
J Environ Manage ; 303: 114257, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920354

RESUMO

Even though biological hazards in the work environments related to waste management were the subject of many scientific works, the knowledge of the topic is not extensive. This study aimed to conduct a comprehensive assessment of microbiological and toxicological hazards at the workstations in a waste sorting plant and develop guidelines for selecting filtering respiratory protective devices that would consider specific workplace conditions. The research included the assessment of quantity (culture method), diversity (high-throughput sequencing), and metabolites (endotoxin - gas chromatography-mass spectrometry; secondary metabolites - liquid chromatography tandem-mass spectrometry) of microorganisms occurring in the air and settled dust. Moreover, cytotoxicity of settled dust against a human epithelial lung cell line was determined with an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The research was performed in a waste sorting plant (Poland; 240,000 tons waste/year) at six workstations: two feeders, two pre-sorting cabins, secondary raw material press and organic fraction waste feeder for composting. The total dust concentration at tested workstations varied from 0.128 mg m-3 to 5.443 mg m-3. The number of microorganisms was between 9.23 × 104 CFU m-3 and 1.38 × 105 CFU m-3 for bacteria and between 1.43 × 105 CFU m-3 and 1.65 × 105 CFU m-3 for fungi, which suggests high microbial contamination of the sorting facility. The numbers of microorganisms in the air correlated very strongly (R2 from 0.70 to 0.94) with those observed in settled dust. Microorganisms representing Group 2 biological agents (acc. to Directive, 2000/54/EC), including Corynebacterium spp., Pseudomonas aeruginosa, Staphylococcus aureus, and others potentially hazardous to human health, were identified. The endotoxins concentration in settled dust ranged from 0.013 nmol LPS mg-1 to 0.048 nmol LPS mg-1. Seventeen (air) and 91 (settled dust) secondary metabolites characteristic, e.g., for moulds, bacteria, lichens, and plants were identified. All dust samples were cytotoxic (IC50 values of 8.66 and 56.15 mg ml-1 after 72 h). A flowchart of respiratory protective devices selection for biological hazards at the workstations in the waste sorting plant was proposed based on the completed tests to help determine the right type and use duration of the equipment.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Microbiologia do Ar , Poluentes Ocupacionais do Ar/análise , Bactérias , Poeira/análise , Fungos , Humanos
4.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744835

RESUMO

The feasibility of early disease detection in potato seeds storage monitoring of volatile organic compounds (VOCs) and plant physiological markers was evaluated using 10 fungal and bacterial pathogens of potato in laboratory-scale experiments. Data analysis of HS-SPME-GC-MS revealed 130 compounds released from infected potatoes, including sesquiterpenes, dimethyl disulfide, 1,2,4-trimethylbenzene, 2,6,11-trimethyldodecane, benzothiazole, 3-octanol, and 2-butanol, which may have been associated with the activity of Fusarium sambucinum, Alternaria tenuissima and Pectobacterium carotovorum. In turn, acetic acid was detected in all infected samples. The criteria of selection for volatiles for possible use as incipient disease indicators were discussed in terms of potato physiology. The established physiological markers proved to demonstrate a negative effect of phytopathogens infecting seed potatoes not only on the kinetics of stem and root growth and the development of the entire root system, but also on gas exchange, chlorophyll content in leaves, and yield. The negative effect of phytopathogens on plant growth was dependent on the time of planting after infection. The research also showed different usefulness of VOCs and physiological markers as the indicators of the toxic effect of inoculated phytopathogens at different stages of plant development and their individual organs.


Assuntos
Solanum tuberosum , Compostos Orgânicos Voláteis , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas , Pectobacterium carotovorum/fisiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia
5.
Molecules ; 27(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35268680

RESUMO

The purpose of the study was to select an environmentally friendly plant biopesticide to protect seed potatoes against phytopathogens. The scope included the evaluation of the antimicrobial activities of 22 plant water extracts, 22 water-glycol extracts, and 3 subcritical carbon dioxide extracts using the agar diffusion method against 10 potato phytopathogens. For the most effective extracts, minimal inhibitory concentration (MIC), chemical composition analysis by gas chromatography-mass spectrometry and in situ assays on seed potatoes were performed. Garlic water extract was finally selected as the most effective in phytopathogen growth inhibition, both in vitro and in situ, with MIC values ranging between 6.3-25 mg/mL. 5-Hydroxymethylfurfural was determined to be the main component of this extract (33.24%). Garlic water extract was proposed as a potential biopesticide against potato phytopathogens.


Assuntos
Solanum tuberosum
6.
Biofouling ; 35(3): 284-298, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31014110

RESUMO

The scientific multistep approach described herein is a result of two years of research into a control method against microbial fouling and biodeterioration of historic building materials by phototrophs. A series of tests were conducted to select the best antifouling agent for eliminating 'green' coatings and protecting surfaces against biofouling. Of the seven active compounds, two with the best penetration abilities were subjected to a photosynthetic activity inhibition test using confocal microscopy. Of the two, a quaternary ammonium salt (QAC) - didecyldimethylammonium chloride (DDAC) - was found to be the most effective. Ten biocides containing QACs at different concentrations were then tested against 'green' coatings on wood, brick and plaster, with the best four being selected for further research in model conditions. As a result, biocides containing >14% (v v-1) DDAC were found to be successful antifouling agents for protecting historical materials against biodeterioration by phototrophs.


Assuntos
Incrustação Biológica , Fósforo/farmacologia , Ar , Desinfetantes/análise , Compostos de Amônio Quaternário/análise , Madeira
7.
Molecules ; 24(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540285

RESUMO

Studies on the functionalization of materials used for the construction of filtering facepiece respirators (FFRs) relate to endowing fibers with biocidal properties. There is also a real need for reducing moisture content accumulating in such materials during FFR use, as it would lead to decreased microorganism survival. Thus, in our study, we propose the use of superabsorbent polymers (SAPs), together with a biocidal agent (biohalloysite), as additives in the manufacturing of polypropylene/polyester (PP/PET) multifunctional filtering material (MFM). The aim of this study was to evaluate the MFM for stability of the modifier's attachment to the polymer matrix, the degree of survival of microorganisms on the nonwoven, and its microorganism filtration efficiency. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to test the stability of the modifier's attachment. The filtration efficiency was determined under conditions of dynamic aerosol flow of S. aureus bacteria. The survival rates (N%) of the following microorganisms were assessed: Escherichia coli and Staphylococcus aureus bacteria, Candida albicans yeast, and Aspergillus niger mold using the AATCC 100-2004 method. FTIR spectrum analysis confirmed the pre-established composition of MFM. The loss of the active substance from MFM in simulated conditions of use did not exceed 0.02%, which validated the stability of the modifier's attachment to the PP/PET fiber structure. SEM image analysis verified the uniformity of the MFM structure. Lower microorganism survival rates were detected for S. aureus, C. albicans, and E. coli on the MFM nonwoven compared to control samples that did not contain the modifiers. However, the MFM did not inhibit A. niger growth. The MFM also showed high filtration efficiency (99.86%) against S. aureus bacteria.


Assuntos
Desinfetantes/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Polipropilenos/síntese química , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Desinfetantes/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Filtração/instrumentação , Microscopia Eletrônica de Varredura , Polímeros , Polipropilenos/química , Dispositivos de Proteção Respiratória/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
8.
Anal Biochem ; 549: 45-52, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29555326

RESUMO

Surface-assisted laser desorption/ionization mass spectrometry on gold nanoparticle enhanced target (AuNPET) technique was used for metabolomic analysis and secondary metabolites detection of two mould strains - Aspergillus versicolor and Penicillium chrysogenum in model conditions on microbiological malt extract agar medium. Results obtained with the use of AuNPET-based mass spectrometry technique were compared with traditional matrix-assisted laser desorption/ionization (MALDI) method based on α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) matrices. Gold nanoparticle enhanced target method enabled effective ionization of microbial cellular extract ingredients without interference from the matrix and also improved calibration of spectra resulting in the detection of much higher amount of characteristic metabolites for studied organisms than MALDI.


Assuntos
Aspergillus/metabolismo , Ouro/química , Metabolômica/métodos , Nanopartículas Metálicas/química , Penicillium chrysogenum/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ácidos Cumáricos/metabolismo , Gentisatos/metabolismo
9.
Molecules ; 22(10)2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28953259

RESUMO

Previous studies on nonwovens used for respiratory protective devices (RPDs) were related to equipment intended for short-term use. There is only limited research on the development of biocidal nonwoven fabrics for reusable RPDs that could be used safely in an industrial work environment where there is a risk of microbial growth. Moreover, a new group of biocides with high antimicrobial activity-gemini surfactants, has never been explored for textile's application in previous studies. The aim of this study was to develop high-efficiency melt-blown nonwovens containing gemini surfactants with time-dependent biocidal activity, and to validate their antimicrobial properties under conditions simulating their use at a plant biomass-processing unit. A set of porous biocidal structures (SPBS) was prepared and applied to the melt-blown polypropylene (PP) nonwovens. The biocidal properties of the structures were triggered by humidity and had different activation rates. Scanning electron microscopy was used to undertake structural studies of the modified PP/SPBS nonwovens. In addition, simulation of plant biomass dust deposition on the nonwovens was performed. The biocidal activity of PP/SPBS nonwovens was evaluated following incubation with Escherichia coli and Aspergillus niger from the American Type Culture Collection, and with Pseudomonas fluorescens and Penicillium chrysogenum isolated from the biomass. PP/SPBS nonwovens exhibited antimicrobial activity to varying levels. Higher antimicrobial activity was noted for bacteria (R = 87.85-97.46%) and lower for moulds (R = 80.11-94.53%).


Assuntos
Desinfetantes/química , Desinfetantes/farmacologia , Tensoativos/química , Tensoativos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Espectroscopia de Ressonância Magnética , Viabilidade Microbiana/efeitos dos fármacos , Polipropilenos/química , Porosidade , Dispositivos de Proteção Respiratória , Têxteis , Fatores de Tempo
10.
Int J Mol Sci ; 17(8)2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27556450

RESUMO

The aim of this study was to select effective and safe microbiocides for the disinfection and protection of historical wooden surfaces at the former Auschwitz II-Birkenau concentration and extermination camp. We tested seven active compounds against bacteria and moulds, of which didecyldimethylammonium chloride and N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine were effective even at 0.02%-2%. Subsequently, eight microbiocides containing the selected active ingredients were chosen and applied three times on the surface of wood samples colonized by bacteria and moulds. ABM-1 and ABM-2-6% solution; Rocima 101-8%; Preventol R 80-12%; Acticide 706 LV-15% and Boramon-30% were the most effective disinfectants. Under laboratory conditions, ABM-1, Boramon and Rocima 101 ensured antimicrobial protection of new wood samples for six months. In situ, 30% Boramon and 8% Rocima 101 applied by spraying effectively protected the historical wood from bacterial and mould growth for 12 and 3 months, respectively. Colour and luminance of the new wood were not altered after exposure to the biocides. Boramon and Rocima 101, applied by the spraying method, caused no significant change in the colour of the historical wood. Results from this study were used to develop a procedure for the protection of wood in historical buildings against biodeterioration.


Assuntos
Anti-Infecciosos/farmacologia , Madeira/microbiologia , Bactérias/efeitos dos fármacos , Desinfetantes/farmacologia , Fungos/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia
11.
J Environ Manage ; 170: 50-9, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26797046

RESUMO

The aim of this study was to determine the effectiveness of microbial preparation and Yucca schidigera in the removal of odorous volatile compounds from poultry manure as well as to evaluate antimicrobial properties of these amendments. It was demonstrated that the combined treatment of poultry manure (PM) with the microbial preparation and Y. schidigera extract can reduce the concentration of odorants by 58%-73%, depending on the tested compound. When Y. schidigera extract and the microbial preparation were applied at a time interval of 48 h, the deodorization efficiency was improved by 6-24%. Furthermore, Y. schidigera extract has antimicrobial properties, which affect poultry manure hygienization. It was found that when the microbial preparation was enriched with Lactobacillus plantarum, it became insensitive to the antimicrobial properties of Y. schidigera.


Assuntos
Bactérias/metabolismo , Esterco , Odorantes , Microbiologia do Solo , Yucca/metabolismo , Animais , Biodegradação Ambiental , Contagem de Colônia Microbiana , Aves Domésticas
12.
J Air Waste Manag Assoc ; 65(4): 466-78, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25947216

RESUMO

UNLABELLED: The objective of the study was to determine the degree of microbiological contamination, type of microflora, bioaerosol particle size distribution, and concentration of endotoxins in dust in different types of composting plants. In addition, this study provides a list of indicator microorganisms that pose a biological threat in composting facilities, based on their prevalence within the workplace, source of isolation, and health hazards. We undertook microbiological analysis of the air, work surfaces, and compost, and assessed the particle size distribution of bioaerosols using a six-stage Andersen sampler. Endotoxins were determined using gas chromatography-mass spectrometry (GC-MS). Microbial identification was undertaken both microscopically and using biochemical tests. The predominant bacterial and fungal species were identified using 16S rRNA and ITS1/2 analysis, respectively. The number of mesophilic microorganisms in composting plants amounted to 6.9×10(2)-2.5×10(4) CFU/m3 in the air, 2.9×10(2)-3.3×10(3) CFU/100 cm2 on surfaces, and 2.2×10(5)-2.4×10(7) CFU/g in compost. Qualitative analysis revealed 75 microbial strains in composting plants, with filamentous fungi being the largest group of microorganisms, accounting for as many as 38 isolates. The total amount of endotoxins was 0.0062-0.0140 nmol/mg of dust. The dust fraction with aerodynamic particle diameter of 0.65-1.1 µm accounted for 28-39% of bacterial aerosols and 4-13% of fungal aerosols. We propose the following strains as indicators of harmful biological agent contamination: Bacillus cereus, Aspergillus fumigatus, Cladosporium cladosporioides, C. herbarum, Mucor hiemalis, and Rhizopus oryzae for both types of composting plants, and Bacillus pumilus, Mucor fragilis, Penicillium svalbardense, and P. crustosum for green waste composting plants. The biological hazards posed within these plants are due to the presence of potentially pathogenic microorganisms and the inhalation of respirable bioaerosol. Depending on the type of microorganism, these hazards may be aggravated or reduced after cleaning procedures. IMPLICATIONS: This study assessed the microbial contamination in two categories of composting plants: (1) facilities producing substrates for industrial cultivation of button mushrooms, and (2) facilities for processing biodegradable waste. Both workplaces showed potentially pathogenic microorganisms, respirable bioaerosol, and endotoxin. These results are useful to determine the procedures to control harmful biological agents, and to disinfect workplaces in composting plants.


Assuntos
Microbiologia do Ar , Poluentes Atmosféricos , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Solo , Bactérias/classificação , Monitoramento Ambiental , Fungos/classificação , Exposição por Inalação , Exposição Ocupacional , Instalações de Eliminação de Resíduos
13.
Aerobiologia (Bologna) ; 31(1): 33-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25750476

RESUMO

The aim of the study was to compare the content of ergosterol in different microorganisms (bacteria, yeasts and moulds) isolated from the air as well as in six species of moulds in their different morphological forms-live mycelium, dead mycelium, and spores. Evaluation of the level of mould contamination of the air in various places using culture method and ergosterol determination was also performed. The analysis of ergosterol was carried out by gas chromatography equipped with flame ionisation detector. For evaluation of the results, analysis of variance and multiple comparison test were used. The quantity of ergosterol in the spores of various species of mould was in the range 1.9-9.4 pg/spore. The presence of yeasts and bacteria in the air does not significantly affect ergosterol concentration, in view of the low content of that sterol in their cells (max. 0.009 pg/cell for bacteria and 0.39 pg/cell for yeast). An ergosterol concentration above 1 ng per m3 can be considered an indicator of excessive mould contamination of indoor air. Based on determination of ergosterol in the air of mouldy rooms the result obtained may be compared with the culture method, due to the 1,000 times higher concentration of ergosterol in the mycelium compared with spores. However, in the analysis of outdoor air, in view of the presence of mould mainly in the form of spores and the degradation of ergosterol by UV radiation, analysis of that compound may indicate a lower level of contamination compared with the culture method.

14.
Aerobiologia (Bologna) ; 31(3): 389-401, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26346115

RESUMO

Museums, archives and libraries have large working environments. The goal of this study was to determine microbial contamination in these work places and estimate the influence of microclimatic parameters and total dust content on microbial contamination. In addition, research included evaluation of ergosterol concentration and fungal bioaerosol particle size distribution. Numbers of micro-organisms in the air and on the surfaces in museums were higher (2.1 × 102-7.0 × 103 cfu/m3 and 1.4 × 102-1.7 × 104 cfu/100 cm2, respectively) than in archives and libraries (3.2 × 102-7.2 × 102 cfu/m3 and 8.4 × 102-8.8 × 102 cfu/100 cm2, respectively). The numbers of micro-organisms detected in the tested museums, archives and libraries did not exceed occupational exposure limits proposed by Polish Committee for the Highest Permissible Concentrations and Intensities of Noxious Agents at the Workplace. The concentrations of respirable and suspended dust in museum storerooms were 2-4 times higher than the WHO-recommended limits. We found a correlation between microclimatic conditions and numbers of micro-organisms in the air in the tested working environments. In addition, a correlation was also found between ergosterol concentration and the number of fungi in the air. Fungi were the dominant micro-organisms in the working environments tested. Particles within the dominant fractions of culturable fungal aerosols sampled from museum storerooms had aerodynamic diameters between 1.1 and 2.1 µm.

15.
World J Microbiol Biotechnol ; 31(10): 1489-99, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246266

RESUMO

Halophilic microorganisms were traditionally isolated from an aquatic environment. There has been little research conducted into halophiles inhabiting the terrestrial environment in which historic monuments deteriorate. Salt efflorescence deposited on the walls is an observed phenomenon on the surface of historic buildings, and would favour the growth of halophiles. However, some conditions have to be fulfilled in order for efflorescence to occur: (1) the presence of salts, (2) porosity, (3) a source of water. Salt crystallization influences the material structure (cracking, detachment, material loss), but active growth of halophilic microorganisms may be a serious threat to historic materials as well, leading to aesthetical changes such as coloured biofilms, orange to pink or even violet stains. This is why it is important to investigate halophilic microorganisms, taking into consideration both the environmental conditions they need to grow in, material characteristics they inhabit, the mechanisms they possess to cope with osmotic stress, and the methods that should be applied for their identification.


Assuntos
Materiais de Construção/microbiologia , Sais/metabolismo
16.
Aerobiologia (Bologna) ; 30(4): 413-422, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25382928

RESUMO

Actinobacteria are widely distributed in many environments and represent the most important trigger to the occupant respiratory health. Health complaints, including hypersensitivity pneumonitis of the workers, were recorded in a mushroom compost facility (MCF). The studies on the airborne bacteria were carried out to find a possible microbiological source of these symptoms. Culture analysis of compost bioaerosols collected in different location of the MCF was performed. An assessment of the indoor microbial exposure revealed bacterial flora of bioaerosol in the mushroom compost facility represented by Bacillus, Geobacillus, Micrococcus, Pseudomonas, Staphylococcus spp., and actinobacterial strain with white aerial mycelium. The thermotolerant actinobacterial strain of the same morphology was repeatedly isolated from many locations in MCF: air, compost sample, and solid surface in production hall. On the base of complex morphological, chemotaxonomic, and phylogenetic characteristics, the isolate has been classified as Nocardiopsis alba. Dominant position of N. alba in microbial environment of the mushroom compost facility may represent an indicator microorganism in compost bioaerosol. The bioavailability of N. alba in mushroom compost facility creates potential risk for the health of workers, and the protection of respiratory tract and/or skin is strongly recommended.

17.
J Environ Manage ; 141: 70-6, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24768836

RESUMO

Laboratory-scale experiments were conducted using poultry manure (PM) from a laying hen farm. Six strains of bacteria and one strain of yeast, selected on the base of the previous study, were investigated to evaluate their activity in the removal of odorous compounds from poultry manure: pure cultures of Bacillus subtilis subsp. spizizenii LOCK 0272, Bacillus megaterium LOCK 0963, Pseudomonas sp. LOCK 0961, Psychrobacter faecalis LOCK 0965, Leuconostoc mesenteroides LOCK 0964, Streptomyces violaceoruber LOCK 0967, and Candida inconspicua LOCK 0272 were suspended in water solution and applied for PM deodorization. The most active strains in the removal of volatile odorous compounds (ammonia, hydrogen sulfide, dimethylamine, trimethylamine, isobutyric acid) belonged to B. subtilis subsp. spizizenii, L. mesenteroides, C. inconspicua, and P. faecalis. In the next series of experiments, a mixed culture of all tested strains was immobilized on a mineral carrier being a mixture of perlite and bentonite (20:80 by weight). That mixed culture applied for PM deodorization was particularly active against ammonia and hydrogen sulfide, which were removed from the exhaust gas by 20.8% and 17.5%, respectively. The experiments also showed that during deodorization the microorganisms could reduce the concentrations of proteins and amino acids in PM. In particular, the mixed culture was active against cysteine and methionine, which were removed from PM by around 45% within 24 h of deodorization.


Assuntos
Esterco , Odorantes , Aves Domésticas , Gerenciamento de Resíduos/métodos , Poluentes Atmosféricos/metabolismo , Óxido de Alumínio , Aminoácidos/metabolismo , Amônia/metabolismo , Animais , Bactérias/metabolismo , Bentonita , Candida/metabolismo , Dimetilaminas/metabolismo , Sulfeto de Hidrogênio/metabolismo , Isobutiratos/metabolismo , Metilaminas/metabolismo , Proteínas/metabolismo , Dióxido de Silício
18.
Ann Microbiol ; 64: 799-808, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860283

RESUMO

The objective of this study was to assess biological colonization of wooden and brick buildings in the former Auschwitz II-Birkenau concentration camp, and to identify the organisms colonizing the examined buildings. Microbiological analysis did not reveal increased microbial activity, and the total microbial count of the barrack surfaces did not exceed 103 CFU/100 cm2. However, certain symptoms of biodegradation of the buildings were observed. The predominant microflora consisted of bacteria of the genera Bacillus, Sporosarcina, Pseudomonas, Micrococcus, Streptomyces, and Staphylococcus, as well as fungi of the genera Acremonium, Cladosporium, Alternaria, Humicola, Penicillium, and Chaetomium. The microflora patterns varied both in wooden and brick buildings. The structural elements of wooden and brick barracks, and especially of the floors and lower parts of bathroom walls, were infected by cyanobacteria and algae, with the most numerous being cyanobacteria of the genera Scytonema, Chroococcus, Gloeothece, Leptolyngbya, diatoms of the genus Diadesmis, and chlorophytes of the genera Chlorella and Apatococcus. The outer surfaces of the examined buildings were primarily colonized by lichens and bryophytes, with nearly 30 species identified. The dominant species of lichens belonged to the genera Candelariella, Caloplaca, Lecanora, Lecidea, Lepraria, Physcia, and Protoparmeliopsis, and those of bryophytes to the genera Bryum, Ceratodon, Marchantia, and Tortula. The quantity and species diversity of lichens and mosses were much lower in wooden barracks than in brick ones. The external surfaces of those barracks were only affected by Lecanora conizaeoides, Lecanora symmicta, Lepraria cf. incana, and Strangospora pinicola. The study results revealed vast biodiversity among the species colonizing historic buildings. The presence of these groups of organisms, resulting from their natural expansion in the environment, is undesirable, as their excessive growth and spread may lead to progressive biodegradation of buildings. Our assessment of biological contamination will enable the development of a disinfection and conservation plan for the examined buildings.

19.
Med Pr ; 65(1): 15-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24834690

RESUMO

BACKGROUND: Due to their animal material processing, tannery workers may be exposed to biological agents. The aim of the study was the microbial contamination assessment of tanneries with different production specifications. Health risk was estimated based on particle size distribution. Moreover, indicators of microbial contamination of tanneries were selected. MATERIALS AND METHODS: The studies were conducted in 2 types of tanneries - processing raw hides and producing chrome-tanned leather. Air was sampled with MAS-100 Eco Air Sampler, leathers using RODAC Envirocheck contact plates and swab method, microbial numbers were determined by a culture method. For the bioaerosols size distribution analysis, a six-stage Andersen sampler was used; identification was performed using microscopy and biochemical methods. Microbial contamination was identified by 16S RNA and ITS1/2 rDNA analysis for bacteria and fungi respectively. RESULTS: The microbial number in the air ranged between 1.2 x 10(3) and 3.7 x 10(3) CFU/m3. While on the leather, it ranged between 7.6 x 10(1) and 5.5 x 10(5) CFU/100 cm2. Bacteria dominated in the tanneries (air: 51-92%, leathers: 60-100%). Results indicate that potential health risks arise from the fungal small bioaerosol particles presence (0.65-2.1 microm). Eleven indicator microorganisms were determined: B. pumilus, B. subtilis, B. cereus, C. lubricantis, C. cladosporioides, P. commune, P. echinulatum, P. chrysogenum, P. crustosum C. parapsilosis and C. albidus. CONCLUSIONS: Microbial contamination evaluation in the tanneries showed the increased bacteria and fungi number in the air in relation to the outdoor air, which indicates an occupational inhalation risk to workers. The designated indicators of microbial contamination in the tanneries are associated with their specific and potentially pathogenic working environment.


Assuntos
Microbiologia do Ar , Poluentes Ocupacionais do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Exposição por Inalação/análise , Exposição Ocupacional/análise , Pele/microbiologia , Curtume , Animais , Bactérias/isolamento & purificação , Cromatos/análise , Contagem de Colônia Microbiana , Monitoramento Ambiental , Fungos/isolamento & purificação , Humanos , Tamanho da Partícula , Polônia , Fatores de Risco , Leveduras/isolamento & purificação
20.
Pol J Microbiol ; 62(2): 131-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24053016

RESUMO

The purpose of this study was to determine the effectiveness of photocatalytic ionisation as a disinfection method for filter materials contaminated by microorganisms, and to assess how air relative humidity (RH), time and microbe type influence the effectiveness of this disinfection. In the quantitative analysis of a used car air filter, bacterial contamination equalled 1.2 x 10(5) cfu/cm2, fungal contamination was 3.8 x 10(6) cfu/cm2, and the isolated microorganisms were Aspergillus niger, Bacillus megaterium, Cladosporium herbarum, Cryptococcus laurenti, Micrococcus sp., Rhodotorula glutinis and Staphylococcus cohnii. In the model experiment, three isolates (C. herbarum, R. glutinis, S. cohnii) and 3 ATCC species (A. niger, E. coli, S. aureus) were used for photocatalytic ionisation disinfection. The conditions of effective photocatalytic ionisation disinfection (R > or = 99.9%) were established as 2-3 h at RH = 77% (bacteria) and 6-24 h at RH = 53% (fungi). RH has an influence on the effectiveness of the photocatalytic disinfection process; the highest effectiveness was obtained for bacteria at RH = 77%, with results 5% higher than for RH = 49%. The studies show that the sensitivity of microorganisms to photocatalytic ionisation disinfection is ordered as follows: Gram-positive bacteria (S. cohnii, S. aureus), Gram-negative bacteria (E. coli), yeasts (R. glutinis), and moulds (C. herbarum, A. niger). Of all the mathematical models used for the description of death dynamics after photocatalytic ionisation disinfection, the Chick-Watson model is the most useful, but for more resistant microorganisms, the delayed Chick-Watson model is highly recommended. It therefore seems, that the presented disinfection method of photocatalytic ionisation can be successfully used to clean filtration materials.


Assuntos
Bactérias/efeitos da radiação , Desinfecção/métodos , Filtração/instrumentação , Fungos/efeitos da radiação , Luz , Processos Fotoquímicos , Catálise , Desinfecção/instrumentação , Fatores de Tempo , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA