Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
RNA ; 29(10): 1610-1620, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37491319

RESUMO

Structure probing combined with next-generation sequencing (NGS) has provided novel insights into RNA structure-function relationships. To date, such studies have focused largely on bacteria and eukaryotes, with little attention given to the third domain of life, archaea. Furthermore, functional RNAs have not been extensively studied in archaea, leaving open questions about RNA structure and function within this domain of life. With archaeal species being diverse and having many similarities to both bacteria and eukaryotes, the archaea domain has the potential to be an evolutionary bridge. In this study, we introduce a method for probing RNA structure in vivo in the archaea domain of life. We investigated the structure of ribosomal RNA (rRNA) from Methanosarcina acetivorans, a well-studied anaerobic archaeal species, grown with either methanol or acetate. After probing the RNA in vivo with dimethyl sulfate (DMS), Structure-seq2 libraries were generated, sequenced, and analyzed. We mapped the reactivity of DMS onto the secondary structure of the ribosome, which we determined independently with comparative analysis, and confirmed the accuracy of DMS probing in M. acetivorans Accessibility of the rRNA to DMS in the two carbon sources was found to be quite similar, although some differences were found. Overall, this study establishes the Structure-seq2 pipeline in the archaea domain of life and informs about ribosomal structure within M. acetivorans.


Assuntos
Archaea , RNA , Archaea/genética , Methanosarcina/genética , Metanol , Bactérias/genética , Ribossomos/genética
2.
RNA ; 28(5): 623-644, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35115361

RESUMO

The ribosomal RNAs, along with their substrates the transfer RNAs, contain the most highly conserved nucleotides in all of biology. We have assembled a database containing structure-based alignments of sequences of the small-subunit rRNAs from organisms that span the entire phylogenetic spectrum, to identify the nucleotides that are universally conserved. In its simplest (bacterial and archaeal) forms, the small-subunit rRNA has ∼1500 nt, of which we identify 140 that are absolutely invariant among the 1961 species in our alignment. We examine the positions and detailed structural and functional interactions of these universal nucleotides in the context of a half century of biochemical and genetic studies and high-resolution structures of ribosome functional complexes. The vast majority of these nucleotides are exposed on the subunit interface surface of the small subunit, where the functional processes of the ribosome take place. However, only 40 of them have been directly implicated in specific ribosomal functions, such as contacting the tRNAs, mRNA, or translation factors. The roles of many other invariant nucleotides may serve to constrain the positions and orientations of those nucleotides that are directly involved in function. Yet others can be rationalized by participation in unusual noncanonical tertiary structures that may uniquely allow correct folding of the rRNA to form a functional ribosome. However, there remain at least 50 nt whose universal conservation is not obvious, serving as a metric for the incompleteness of our understanding of ribosome structure and function.


Assuntos
Nucleotídeos , RNA Ribossômico , Conformação de Ácido Nucleico , Nucleotídeos/genética , Filogenia , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , Ribossomos/genética
3.
Nucleic Acids Res ; 43(W1): W15-23, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26048960

RESUMO

The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa.


Assuntos
RNA Ribossômico/química , Alinhamento de Sequência/métodos , Análise de Sequência de RNA , Software , Internet , Conformação de Ácido Nucleico
4.
RNA Biol ; 11(3): 254-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24713659

RESUMO

A few years before I started my graduate studies, Carl Woese was establishing a collaboration with his friend, colleague, and my PhD advisor, Harry Noller. Carl was introducing comparative methods to Harry's lab to determine the secondary structure for the 16S and 23S rRNAs. In addition to an experimental project that had minimal to no success, I was attempting to predict an RNA secondary structure from a single sequence. I determined after a few months that the complexity of RNA folding was much greater than ever anticipated. Ten lessons were learned about the dynamics of RNA folding, the comparative methods used to accurately predict the RNAs secondary structure and the beginnings of its tertiary structure, the use of comparative methods to reveal much more than ever anticipated about RNA structure, other applications beyond RNA structure, and the lessons about the process of scientific discovery.


Assuntos
Biologia Computacional/métodos , RNA Ribossômico/química , Conformação de Ácido Nucleico , Filogenia , Dobramento de RNA , RNA Ribossômico/genética
5.
Appl Environ Microbiol ; 79(6): 1803-12, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23291551

RESUMO

Lactobacilli (Lactobacillales: Lactobacillaceae) are well known for their roles in food fermentation, as probiotics, and in human health, but they can also be dominant members of the microbiota of some species of Hymenoptera (ants, bees, and wasps). Honey bees and bumble bees associate with host-specific lactobacilli, and some evidence suggests that these lactobacilli are important for bee health. Social transmission helps maintain associations between these bees and their respective microbiota. To determine whether lactobacilli associated with social hymenopteran hosts are generally host specific, we gathered publicly available Lactobacillus 16S rRNA gene sequences, along with Lactobacillus sequences from 454 pyrosequencing surveys of six other hymenopteran species (three sweat bees and three ants). We determined the comparative secondary structural models of 16S rRNA, which allowed us to accurately align the entire 16S rRNA gene, including fast-evolving regions. BLAST searches and maximum-likelihood phylogenetic reconstructions confirmed that honey and bumble bees have host-specific Lactobacillus associates. Regardless of colony size or within-colony oral sharing of food (trophallaxis), sweat bees and ants associate with lactobacilli that are closely related to those found in vertebrate hosts or in diverse environments. Why honey and bumble bees associate with host-specific lactobacilli while other social Hymenoptera do not remains an open question. Lactobacilli are known to inhibit the growth of other microbes and can be beneficial whether they are coevolved with their host or are recruited by the host from environmental sources through mechanisms of partner choice.


Assuntos
Especificidade de Hospedeiro , Himenópteros/microbiologia , Lactobacillus/classificação , Lactobacillus/isolamento & purificação , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Lactobacillus/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
BMC Genomics ; 11: 485, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20813041

RESUMO

BACKGROUND: Discontinuous genes have been observed in bacteria, archaea, and eukaryotic nuclei, mitochondria and chloroplasts. Gene discontinuity occurs in multiple forms: the two most frequent forms result from introns that are spliced out of the RNA and the resulting exons are spliced together to form a single transcript, and fragmented gene transcripts that are not covalently attached post-transcriptionally. Within the past few years, fragmented ribosomal RNA (rRNA) genes have been discovered in bilateral metazoan mitochondria, all within a group of related oysters. RESULTS: In this study, we have characterized this fragmentation with comparative analysis and experimentation. We present secondary structures, modeled using comparative sequence analysis of the discontinuous mitochondrial large subunit rRNA genes of the cupped oysters C. virginica, C. gigas, and C. hongkongensis. Comparative structure models for the large subunit rRNA in each of the three oyster species are generally similar to those for other bilateral metazoans. We also used RT-PCR and analyzed ESTs to determine if the two fragmented LSU rRNAs are spliced together. The two segments are transcribed separately, and not spliced together although they still form functional rRNAs and ribosomes. CONCLUSIONS: Although many examples of discontinuous ribosomal genes have been documented in bacteria and archaea, as well as the nuclei, chloroplasts, and mitochondria of eukaryotes, oysters are some of the first characterized examples of fragmented bilateral animal mitochondrial rRNA genes. The secondary structures of the oyster LSU rRNA fragments have been predicted on the basis of previous comparative metazoan mitochondrial LSU rRNA structure models.


Assuntos
Genes de RNAr/genética , Genoma Mitocondrial/genética , Ostreidae/genética , Subunidades Ribossômicas Maiores/genética , Animais , Sequência de Bases , Cristalografia por Raios X , DNA Complementar/genética , DNA Mitocondrial/genética , Escherichia coli/genética , Regulação da Expressão Gênica , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Placozoa/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
8.
Antonie Van Leeuwenhoek ; 98(2): 195-212, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20333466

RESUMO

We reconstruct the phylogenetic relationships within the bacterial genus Pseudonocardia to evaluate two models explaining how and why Pseudonocardia bacteria colonize the microbial communities on the integument of fungus-gardening ant species (Attini, Formicidae). The traditional Coevolution-Codivergence model views the integument-colonizing Pseudonocardia as mutualistic microbes that are largely vertically transmitted between ant generations and that supply antibiotics that specifically suppress the garden pathogen Escovopsis. The more recent Acquisition model views Pseudonocardia as part of a larger integumental microbe community that frequently colonizes the ant integument from environmental sources (e.g., soil, plant material). Under this latter model, ant-associated Pseudonocardia may have diverse ecological roles on the ant integument (possibly ranging from pathogenic, to commensal, to mutualistic) and are not necessarily related to Escovopsis suppression. We test distinct predictions of these two models regarding the phylogenetic proximity of ant-associated and environmental Pseudonocardia. We amassed 16S-rRNA gene sequence information for 87 attine-associated and 238 environmental Pseudonocardia, aligned the sequences with the help of RNA secondary structure modeling, and reconstructed phylogenetic relationships using a maximum-likelihood approach. We present 16S-rRNA secondary structure models of representative Pseudonocardia species to improve sequence alignments and identify sequencing errors. Our phylogenetic analyses reveal close affinities and even identical sequence matches between environmental Pseudonocardia and ant-associated Pseudonocardia, as well as nesting of environmental Pseudonocardia in subgroups that were previously thought to be specialized to associate only with attine ants. The great majority of ant-associated Pseudonocardia are closely related to autotrophic Pseudonocardia and are placed in a large subgroup of Pseudonocardia that is known essentially only from cultured isolates (rather than cloned 16S sequences). The preponderance of the known ant-associated Pseudonocardia in this latter clade of culturable lineages may not necessarily reflect abundance of these Pseudonocardia types on the ants, but isolation biases when screening for Pseudonocardia (e.g., preferential isolation of autotrophic Pseudonocardia with minimum-nutrient media). The accumulated phylogenetic patterns and the possibility of isolation biases in previous work further erode support for the traditional Coevolution-Codivergence model and calls for continued revision of our understanding how and why Pseudonocardia colonize the microbial communities on the integument of fungus-gardening ant species.


Assuntos
Actinomycetales/classificação , Actinomycetales/fisiologia , Formigas/microbiologia , Filogenia , Simbiose , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Animais , Formigas/fisiologia , Modelos Biológicos , Dados de Sequência Molecular
9.
Structure ; 16(4): 535-48, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18400176

RESUMO

In this paper, we present a structure of the mammalian ribosome determined at approximately 8.7 A resolution by electron cryomicroscopy and single-particle methods. A model of the ribosome was created by docking homology models of subunit rRNAs and conserved proteins into the density map. We then modeled expansion segments in the subunit rRNAs and found unclaimed density for approximately 20 proteins. In general, many conserved proteins and novel proteins interact with expansion segments to form an integrated framework that may stabilize the mature ribosome. Our structure provides a snapshot of the mammalian ribosome at the beginning of translation and lends support to current models in which large movements of the small subunit and L1 stalk occur during tRNA translocation. Finally, details are presented for intersubunit bridges that are specific to the eukaryotic ribosome. We suggest that these bridges may help reset the conformation of the ribosome to prepare for the next cycle of chain elongation.


Assuntos
Modelos Moleculares , RNA Ribossômico/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Menores de Eucariotos/química , Ribossomos/química , Animais , Microscopia Crioeletrônica , Cães , Processamento de Imagem Assistida por Computador , Biossíntese de Proteínas , RNA de Transferência/química , Receptores de Quinase C Ativada , Receptores de Superfície Celular/química
10.
Genome Biol Evol ; 12(10): 1694-1710, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32785681

RESUMO

The ribosome's common core, comprised of ribosomal RNA (rRNA) and universal ribosomal proteins, connects all life back to a common ancestor and serves as a window to relationships among organisms. The rRNA of the common core is similar to rRNA of extant bacteria. In eukaryotes, the rRNA of the common core is decorated by expansion segments (ESs) that vastly increase its size. Supersized ESs have not been observed previously in Archaea, and the origin of eukaryotic ESs remains enigmatic. We discovered that the large ribosomal subunit (LSU) rRNA of two Asgard phyla, Lokiarchaeota and Heimdallarchaeota, considered to be the closest modern archaeal cell lineages to Eukarya, bridge the gap in size between prokaryotic and eukaryotic LSU rRNAs. The elongated LSU rRNAs in Lokiarchaeota and Heimdallarchaeota stem from two supersized ESs, called ES9 and ES39. We applied chemical footprinting experiments to study the structure of Lokiarchaeota ES39. Furthermore, we used covariation and sequence analysis to study the evolution of Asgard ES39s and ES9s. By defining the common eukaryotic ES39 signature fold, we found that Asgard ES39s have more and longer helices than eukaryotic ES39s. Although Asgard ES39s have sequences and structures distinct from eukaryotic ES39s, we found overall conservation of a three-way junction across the Asgard species that matches eukaryotic ES39 topology, a result consistent with the accretion model of ribosomal evolution.


Assuntos
Archaea/química , Evolução Molecular , Modelos Moleculares , Dobramento de RNA , RNA Ribossômico/química , Archaea/genética , RNA Ribossômico/genética
12.
Eur J Phycol ; 44(3): 277-290, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20224747

RESUMO

A recent reclassification of diatoms based on phylogenies recovered using the nuclear-encoded SSU rRNA gene contains three major classes, Coscinodiscophyceae, Mediophyceae and the Bacillariophyceae (the CMB hypothesis). We evaluated this with a sequence alignment of 1336 protist and heterokont algae SSU rRNAs, which includes 673 diatoms. Sequences were aligned to maintain structural elements conserved within this dataset. Parsimony analysis rejected the CMB hypothesis, albeit weakly. Morphological data are also incongruent with this recent CMB hypothesis of three diatom clades. We also reanalyzed a recently published dataset which purports to support the CMB hypothesis. Our reanalysis found that the original analysis had not converged on the true bipartition posterior probability distribution, and rejected the CMB hypothesis. Thus we conclude that a reclassification of the evolutionary relationships of the diatoms according to the CMB hypothesis is premature.

13.
Bioinformatics ; 23(24): 3289-96, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17921494

RESUMO

MOTIVATIONS: Biclustering is a clustering method that simultaneously clusters both the domain and range of a relation. A challenge in multiple sequence alignment (MSA) is that the alignment of sequences is often intended to reveal groups of conserved functional subsequences. Simultaneously, the grouping of the sequences can impact the alignment; precisely the kind of dual situation biclustering is intended to address. RESULTS: We define a representation of the MSA problem enabling the application of biclustering algorithms. We develop a computer program for local MSA, BlockMSA, that combines biclustering with divide-and-conquer. BlockMSA simultaneously finds groups of similar sequences and locally aligns subsequences within them. Further alignment is accomplished by dividing both the set of sequences and their contents. The net result is both a multiple sequence alignment and a hierarchical clustering of the sequences. BlockMSA was tested on the subsets of the BRAliBase 2.1 benchmark suite that display high variability and on an extension to that suite to larger problem sizes. Also, alignments were evaluated of two large datasets of current biological interest, T box sequences and Group IC1 Introns. The results were compared with alignments computed by ClustalW, MAFFT, MUCLE and PROBCONS alignment programs using Sum of Pairs (SPS) and Consensus Count. Results for the benchmark suite are sensitive to problem size. On problems of 15 or greater sequences, BlockMSA is consistently the best. On none of the problems in the test suite are there appreciable differences in scores among BlockMSA, MAFFT and PROBCONS. On the T box sequences, BlockMSA does the most faithful job of reproducing known annotations. MAFFT and PROBCONS do not. On the Intron sequences, BlockMSA, MAFFT and MUSCLE are comparable at identifying conserved regions. AVAILABILITY: BlockMSA is implemented in Java. Source code and supplementary datasets are available at http://aug.csres.utexas.edu/msa/


Assuntos
Algoritmos , Inteligência Artificial , Análise por Conglomerados , Reconhecimento Automatizado de Padrão/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Sequência de Bases , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico
14.
J Mol Biol ; 360(5): 978-88, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16828489

RESUMO

Analysis of aligned RNA sequences and high-resolution crystal structures has revealed a new RNA structural element, termed the UAA/GAN motif. Found in internal loops of the 23 S rRNA, as well as in RNase P RNA and group I and II introns, this six-nucleotide motif adopts a distinctive local structure that includes two base-pairs with non-canonical conformations and three conserved adenine bases, which form a cross-strand AAA stack in the minor groove. Most importantly, the motif invariably forms long-range tertiary contacts, as the AAA stack typically forms A-minor interactions and the flipped-out N nucleotide forms additional contacts that are specific to the structural context of each loop. The widespread presence of this motif and its propensity to form long-range contacts suggest that it plays a critical role in defining the architectures of structured RNAs.


Assuntos
Proteínas de Bactérias/química , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Ribossômico 23S/química , Ribonuclease P/química , Pareamento de Bases , Sequência de Bases , Íntrons , Dados de Sequência Molecular
15.
J Mol Biol ; 358(1): 193-212, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16510155

RESUMO

Protein translation is essential for all forms of life and is conducted by a macromolecular complex, the ribosome. Evolutionary changes in protein and RNA sequences can affect the 3D organization of structural features in ribosomes in different species. The most dramatic changes occur in animal mitochondria, whose genomes have been reduced and altered significantly. The RNA component of the mitochondrial ribosome (mitoribosome) is reduced in size, with a compensatory increase in protein content. Until recently, it was unclear how these changes affect the 3D structure of the mitoribosome. Here, we present a structural model of the large subunit of the mammalian mitoribosome developed by combining molecular modeling techniques with cryo-electron microscopic data at 12.1A resolution. The model contains 93% of the mitochondrial rRNA sequence and 16 mitochondrial ribosomal proteins in the large subunit of the mitoribosome. Despite the smaller mitochondrial rRNA, the spatial positions of RNA domains known to be involved directly in protein synthesis are essentially the same as in bacterial and archaeal ribosomes. However, the dramatic reduction in rRNA content necessitates evolution of unique structural features to maintain connectivity between RNA domains. The smaller rRNA sequence also limits the likelihood of tRNA binding at the E-site of the mitoribosome, and correlates with the reduced size of D-loops and T-loops in some animal mitochondrial tRNAs, suggesting co-evolution of mitochondrial rRNA and tRNA structures.


Assuntos
Mitocôndrias/química , Mitocôndrias/genética , Modelos Moleculares , Ribossomos/química , Ribossomos/genética , Animais , Sequência de Bases , Bovinos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA/química , RNA/genética , RNA Mitocondrial , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA de Transferência/genética , Reprodutibilidade dos Testes , Proteínas Ribossômicas/química , Homologia Estrutural de Proteína
16.
Curr Opin Struct Biol ; 12(3): 301-10, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12127448

RESUMO

The determination of the 16S and 23S rRNA secondary structure models was initiated shortly after the first complete 16S and 23S rRNA sequences were determined in the late 1970s. The structures that are common to all 16S rRNAs and all 23S rRNAs were determined using comparative methods from the analysis of thousands of rRNA sequences. Twenty-plus years later, the 16S and 23S rRNA comparative structure models have been evaluated against the recently determined high-resolution crystal structures of the 30S and 50S ribosomal subunits. Nearly all of the predicted covariation-based base pairs, including the regular base pairs and helices, and the irregular base pairs and tertiary interactions, were present in the 30S and 50S crystal structures.


Assuntos
Modelos Moleculares , RNA Ribossômico/química , Cristalografia por Raios X , Variação Genética
17.
J Mol Biol ; 344(5): 1225-49, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15561141

RESUMO

In addition to the canonical base-pairs comprising the standard Watson-Crick (C:G and U:A) and wobble U:G conformations, an analysis of the base-pair types and conformations in the rRNAs in the high-resolution crystal structures of the Thermus thermophilus 30S and Haloarcula marismortui 50S ribosomal subunits has identified a wide variety of non-canonical base-pair types and conformations. However, the existing nomenclatures do not describe all of the observed non-canonical conformations or describe them with some ambiguity. Thus, a standardized system is required to classify all of these non-canonical conformations appropriately. Here, we propose a new, simple and systematic nomenclature that unambiguously classifies base-pair conformations occurring in base-pairs, base-triples and base-quadruples that are associated with secondary and tertiary interactions. This system is based on the topological arrangement of the two bases and glycosidic bonds in a given base-pair. Base-pairs in the internal positions of regular secondary structure helices usually form with canonical base-pair groups (C:G, U:A, and U:G) and canonical conformations (C:G WC, U:A WC, and U:G Wb). In contrast, non-helical base-pairs outside of regular structure helices usually have non-canonical base-pair groups and conformations. In addition, many non-helical base-pairs are involved in RNA motifs that form a defined set of non-canonical conformations. Thus, each rare non-canonical conformation may be functionally and structurally important. Finally, the topology-based isostericity of base-pair conformations can rationalize base-pair exchanges in the evolution of RNA molecules.


Assuntos
Pareamento de Bases , RNA Ribossômico/química , Carboidratos/química , Cristalografia por Raios X , Haloarcula marismortui/genética , Ligação de Hidrogênio , Estrutura Molecular , Prótons , Thermus thermophilus/genética
18.
J Mol Biol ; 325(1): 65-83, 2003 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-12473452

RESUMO

The lonepair triloop (LPTL) is an RNA structural motif that contains a single ("lone") base-pair capped by a hairpin loop containing three nucleotides. The two nucleotides immediately outside of this motif (5' and 3' to the lonepair) are not base-paired to one another, restricting the length of this helix to a single base-pair. Four examples of this motif, along with three tentative examples, were initially identified in the 16S and 23S rRNAs with covariation analysis. An evaluation of the recently determined crystal structures of the Thermus thermophilus 30S and Haloarcula marismortui 50S ribosomal subunits revealed the authenticity for all of these proposed interactions and identified 16 more LPTLs in the 5S, 16S and 23S rRNAs. This motif is found in the T loop in the tRNA crystal structures. The lonepairs are positioned, in nearly all examples, immediately 3' to a regular secondary structure helix and are stabilized by coaxial stacking onto this flanking helix. In all but two cases, the nucleotides in the triloop are involved in a tertiary interaction with another section of the rRNA, establishing an overall three-dimensional function for this motif. Of these 24 examples, 14 occur in multi-stem loops, seven in hairpin loops and three in internal loops. While the most common lonepair, U:A, occurs in ten of the 24 LPTLs, the remaining 14 LPTLs contain seven different base-pair types. Only a few of these lonepairs adopt the standard Watson-Crick base-pair conformations, while the majority of the base-pairs have non-standard conformations. While the general three-dimensional conformation is similar for all examples of this motif, characteristic differences lead to several subtypes present in different structural environments. At least one triloop nucleotide in 22 of the 24 LPTLs in the rRNAs and tRNAs forms a tertiary interaction with another part of the RNA. When a LPTL containing the GNR or UYR triloop sequence forms a tertiary interaction with the first (and second) triloop nucleotide, it recruits a fourth nucleotide to mediate stacking and mimic the tetraloop conformation. Approximately half of the LPTL motifs are in close association with proteins. The majority of these LPTLs are positioned at sites in rRNAs that are conserved in the three phylogenetic domains; a few of these occur in regions of the rRNA associated with ribosomal function, including the presumed site of peptidyl transferase activity in the 23S rRNA.


Assuntos
Conformação de Ácido Nucleico , RNA Ribossômico/química , RNA de Transferência/química , Pareamento de Bases , Sequência de Bases , Cristalografia por Raios X , Haloarcula marismortui/genética , Internet , Dados de Sequência Molecular , Ligação Proteica , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Ribossomos/química , Ribossomos/genética , Saccharomyces cerevisiae/genética , Solventes/química , Thermus thermophilus/genética
19.
J Mol Biol ; 321(2): 215-34, 2002 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-12144780

RESUMO

We have determined the three-dimensional organization of ribosomal RNAs and proteins essential for minimal ribosome function. Comparative sequence analysis identifies regions of the ribosome that have been evolutionarily conserved, and the spatial organization of conserved domains is determined by mapping these onto structures of the 30S and 50S subunits determined by X-ray crystallography. Several functional domains of the ribosome are conserved in their three-dimensional organization in the Archaea, Bacteria, Eucaryotic nuclear, mitochondria and chloroplast ribosomes. In contrast, other regions from both subunits have shifted their position in three-dimensional space during evolution, including the L11 binding domain and the alpha-sarcin-ricin loop (SRL). We examined conserved bridge interactions between the two ribosomal subunits, giving an indication of which contacts are more significant. The tRNA contacts that are conserved were also determined, highlighting functional interactions as the tRNA moves through the ribosome during protein synthesis. To augment these studies of a large collection of comparative structural models sampled from all major branches on the phylogenetic tree, Caenorhabditis elegans mitochondrial rRNA is considered individually because it is among the smallest rRNA sequences known. The C.elegans model supports the large collection of comparative structure models while providing insight into the evolution of mitochondrial ribosomes.


Assuntos
Archaea/citologia , Bactérias/citologia , Caenorhabditis elegans/citologia , Ribossomos/química , Ribossomos/genética , Animais , Archaea/genética , Bactérias/genética , Sequência de Bases , Sítios de Ligação , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Cloroplastos/química , Cloroplastos/genética , Simulação por Computador , Sequência Conservada , Células Eucarióticas/citologia , Evolução Molecular , Mitocôndrias/química , Mitocôndrias/genética , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Movimento , Filogenia , Estrutura Terciária de Proteína , Subunidades Proteicas , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Alinhamento de Sequência , Deleção de Sequência
20.
BMC Bioinformatics ; 5: 105, 2004 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-15296519

RESUMO

BACKGROUND: A detailed understanding of an RNA's correct secondary and tertiary structure is crucial to understanding its function and mechanism in the cell. Free energy minimization with energy parameters based on the nearest-neighbor model and comparative analysis are the primary methods for predicting an RNA's secondary structure from its sequence. Version 3.1 of Mfold has been available since 1999. This version contains an expanded sequence dependence of energy parameters and the ability to incorporate coaxial stacking into free energy calculations. We test Mfold 3.1 by performing the largest and most phylogenetically diverse comparison of rRNA and tRNA structures predicted by comparative analysis and Mfold, and we use the results of our tests on 16S and 23S rRNA sequences to assess the improvement between Mfold 2.3 and Mfold 3.1. RESULTS: The average prediction accuracy for a 16S or 23S rRNA sequence with Mfold 3.1 is 41%, while the prediction accuracies for the majority of 16S and 23S rRNA structures tested are between 20% and 60%, with some having less than 20% prediction accuracy. The average prediction accuracy was 71% for 5S rRNA and 69% for tRNA. The majority of the 5S rRNA and tRNA sequences have prediction accuracies greater than 60%. The prediction accuracy of 16S rRNA base-pairs decreases exponentially as the number of nucleotides intervening between the 5' and 3' halves of the base-pair increases. CONCLUSION: Our analysis indicates that the current set of nearest-neighbor energy parameters in conjunction with the Mfold folding algorithm are unable to consistently and reliably predict an RNA's correct secondary structure. For 16S or 23S rRNA structure prediction, Mfold 3.1 offers little improvement over Mfold 2.3. However, the nearest-neighbor energy parameters do work well for shorter RNA sequences such as tRNA or 5S rRNA, or for larger rRNAs when the contact distance between the base-pairs is less than 100 nucleotides.


Assuntos
Entropia , Conformação de Ácido Nucleico , RNA/química , Termodinâmica , Sequência de Bases , Biologia Computacional/métodos , Biologia Computacional/normas , Modelos Genéticos , Filogenia , Valor Preditivo dos Testes , RNA Arqueal/química , RNA Bacteriano/química , RNA de Cloroplastos/química , RNA Mitocondrial , RNA Ribossômico 16S/química , RNA Ribossômico 23S/química , RNA Ribossômico 5S/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA