Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biotechnol Bioeng ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39295215

RESUMO

Polysorbates (PS) are commonly used as stabilizers of biopharmaceuticals such as monoclonal antibodies (mAbs). However, they are prone to chemical and enzymatic degradation. The latter can be caused by residual host cell proteins (HCPs) in the drug substance. Degradation affects the functionality of the PS surfactant which can lead to formation of particles. An increasing number of publications describe enzymatic PS degradation. Significant efforts have been made to characterize HCP removal during Downstream Processing (DSP) of mAbs and to develop mitigation strategies. Here we describe the use of glycine buffer for acidic elution in Protein A affinity chromatography compared to acetate buffer, which is more commonly used in the biopharmaceutical industry. Increased turbidity was observed during pH re-adjustment after low pH virus inactivation when using glycine buffer. Analytical data suggests that this turbidity is caused by the formation of precipitates which include HCP and DNA impurities. Additionally, as a zwitterion, glycine does not contribute to conductivity; this further enhances HCP removal during anion-exchange flow-through chromatography. Although glycine is well known as a possible elution buffer for Protein A affinity chromatography, its positive impact on HCP removal and PS stability have not yet been described in literature.

2.
J Tissue Viability ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38918146

RESUMO

AIM: Genital burns are rare injuries. Reconstruction of penile skin defects should consider cosmetic and functional outcomes. Skin grafts can develop scar contractures and carry hair follicles, causing unwanted results. These downsides remain unsolved issues. This work aimed to describe a new foreskin advancement flap method for completely reconstructing penile shaft skin defects in severely burned patients. MATERIALS AND METHODS: From 2021 to 2023, four patients with third-degree burns in the genital area were enrolled in this investigation. We describe a series of cases with deep burns to the penile shaft and surrounding area that needed debridement and reconstruction using a novel technique called "reverse circumcision," which consists of tangential excision of the penis and a foreskin advancement flap without longitudinal cuts with less morbidity, preservation of function, and a better aesthetic appearance. The patients had an average follow-up of nine months. RESULTS: The reverse circumcision technique was established for patients with severe burns in the genital area. The four patients were satisfied with the postoperative results and the aesthetic results of the procedure without reporting any complications. No scarring or contractures were observed on the glans or penile shaft after surgery. CONCLUSIONS: Compared with other flap methods, the use of a reverse circumcision foreskin advancement flap was more straightforward, feasible, and effective. In adults, the foreskin tissue completely covers the penile shaft skin defect. It is a viable reconstructive surgical technique that is easily reproducible and has excellent aesthetic and functional results. For this surgical technique, tissue transfers, bulky regional flaps, or skin grafts were not needed.

3.
Mol Cell ; 55(2): 227-37, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24981174

RESUMO

Approximately 30% of eukaryotic proteins contain hydrophobic signals for localization to the secretory pathway. These proteins can be mislocalized in the cytosol due to mutations in their targeting signals, certain stresses, or intrinsic inefficiencies in their translocation. Mislocalized proteins (MLPs) are protected from aggregation by the Bag6 complex and degraded by a poorly characterized proteasome-dependent pathway. Here, we identify the ubiquitin ligase RNF126 as a key component of the MLP degradation pathway. In vitro reconstitution and fractionation studies reveal that RNF126 is the primary Bag6-dependent ligase. RNF126 is recruited to the N-terminal Ubl domain of Bag6 and preferentially ubiquitinates juxtahydrophobic lysine residues on Bag6-associated clients. Interfering with RNF126 recruitment in vitro prevents ubiquitination, and RNF126 depletion in cells partially stabilizes a Bag6 client. Bag6-dependent ubiquitination can be recapitulated with purified components, paving the way for mechanistic analyses of downstream steps in this cytosolic quality control pathway.


Assuntos
Chaperonas Moleculares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Citosol/enzimologia , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas PrPC/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Transporte Proteico , Células Sf9 , Spodoptera , Ubiquitinação
4.
Biotechnol Bioeng ; 118(3): 1091-1104, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33200817

RESUMO

A high degree of charge heterogeneity is an unfavorable phenomenon commonly observed for therapeutic monoclonal antibodies (mAbs). Removal of these impurities during manufacturing often comes at the cost of impaired step yields. A wide spectrum of posttranslational and chemical modifications is known to modify mAb charge. However, a deeper understanding of underlying mechanisms triggering charged species would be beneficial for the control of mAb charge variants during bioprocessing. In this study, a comprehensive analytical investigation was carried out to define the root causes and mechanisms inducing acidic variants of an immunoglobulin G1-derived mAb. Characterization of differently charged species by liquid chromatography-mass spectrometry revealed the reduction of disulfide bonds in acidic variants, which is followed by cysteinylation and glutathionylation of cysteines. Importantly, biophysical stability and integrity of the mAb are not affected. By in vitro incubation of the mAb with the reducing agent cysteine, disulfide bond degradation was directly linked to an increase of numerous acidic species. Modifying the concentrations of cysteine during the fermentation of various mAbs illustrated that redox potential is a critical aspect to consider during bioprocess development with respect to charge variant control.


Assuntos
Anticorpos Monoclonais , Cisteína/química , Dissulfetos/química , Imunoglobulina G , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Células CHO , Técnicas de Cultura de Células , Cromatografia Líquida , Cricetulus , Imunoglobulina G/biossíntese , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação
5.
Mol Cell ; 51(1): 35-45, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23727016

RESUMO

Translation factor eIF5A, containing the unique amino acid hypusine, was originally shown to stimulate Met-puromycin synthesis, a model assay for peptide bond formation. More recently, eIF5A was shown to promote translation elongation; however, its precise requirement in protein synthesis remains elusive. We use in vivo assays in yeast and in vitro reconstituted translation assays to reveal a specific requirement for eIF5A to promote peptide bond formation between consecutive Pro residues. Addition of eIF5A relieves ribosomal stalling during translation of three consecutive Pro residues in vitro, and loss of eIF5A function impairs translation of polyproline-containing proteins in vivo. Hydroxyl radical probing experiments localized eIF5A near the E site of the ribosome with its hypusine residue adjacent to the acceptor stem of the P site tRNA. Thus, eIF5A, like its bacterial ortholog EFP, is proposed to stimulate the peptidyl transferase activity of the ribosome and facilitate the reactivity of poor substrates like Pro.


Assuntos
Motivos de Aminoácidos , Fatores de Iniciação de Peptídeos/fisiologia , Peptídeos/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/fisiologia , Modelos Biológicos , Modelos Moleculares , Estrutura Terciária de Proteína , Ribossomos/metabolismo , Ribossomos/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/química , Fator de Iniciação de Tradução Eucariótico 5A
6.
Nucleic Acids Res ; 45(14): 8392-8402, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637321

RESUMO

Whereas ribosomes efficiently catalyze peptide bond synthesis by most amino acids, the imino acid proline is a poor substrate for protein synthesis. Previous studies have shown that the translation factor eIF5A and its bacterial ortholog EF-P bind in the E site of the ribosome where they contact the peptidyl-tRNA in the P site and play a critical role in promoting the synthesis of polyproline peptides. Using misacylated Pro-tRNAPhe and Phe-tRNAPro, we show that the imino acid proline and not tRNAPro imposes the primary eIF5A requirement for polyproline synthesis. Though most proline analogs require eIF5A for efficient peptide synthesis, azetidine-2-caboxylic acid, a more flexible four-membered ring derivative of proline, shows relaxed eIF5A dependency, indicating that the structural rigidity of proline might contribute to the requirement for eIF5A. Finally, we examine the interplay between eIF5A and polyamines in promoting translation elongation. We show that eIF5A can obviate the polyamine requirement for general translation elongation, and that this activity is independent of the conserved hypusine modification on eIF5A. Thus, we propose that the body of eIF5A functionally substitutes for polyamines to promote general protein synthesis and that the hypusine modification on eIF5A is critically important for poor substrates like proline.


Assuntos
Aminoácidos/metabolismo , Lisina/análogos & derivados , Biossíntese Peptídica , Fatores de Iniciação de Peptídeos/metabolismo , Poliaminas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Lisina/metabolismo , Conformação de Ácido Nucleico , Fatores de Iniciação de Peptídeos/química , Peptídeos/metabolismo , Prolina/análogos & derivados , Prolina/química , Prolina/metabolismo , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/metabolismo , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/metabolismo , Proteínas de Ligação a RNA/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Fator de Iniciação de Tradução Eucariótico 5A
7.
Biotechnol Bioeng ; 115(10): 2405-2415, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29959868

RESUMO

Glucose oxidase (GOx) is of high industrial interest for glucose sensing because of its high ß-d-glucose specificity. The efficient and specific electrochemical communication between the redox center and electrodes is crucial to ensure accurate glucose determination. The efficiency of the electron transfer rates (ETR) with GOx, together with quinone diamine based mediators, is low and differs even among mediator derivatives. To design optimized enzyme-mediator couples and to describe a mediator binding model, a joint experimental and computational study was performed based on an oxygen-independent GOx variant V7 and two quinone diimine based electron mediators (QDM-1 and QDM-2), which differ in polarity and size, and ferrocenemethanol (FM). A site saturation library at position 414 was screened with all three mediators and yielded four beneficial substitutions Tyr, Met, Leu, and Val. The variants showed increased mediator activity for the more polar QDM-2 with a simultaneously decreased activity for the less polar and smaller QDM-1 and for FM. The variant GOx V7-I414Y exhibited the biggest change for the quinone diimine derivatives compared with V7 (QDM-1: 55.9 U/mg V7, 33.2 U/mg V7-I414Y; QDM-2: 2.7 U/mg V7, 12.9 U/mg V7-I414Y). Theoretical ETR calculated based on the Marcus theory were in good agreement with the experimental results. Molecular docking studies revealed a preferable binding of the two QD mediators directly in the active site, 3.5 Å away from the N5 atom of the flavin adenine dinucleotide (FAD) and in direct vicinity to position 414. In summary, position 414 in the active site was identified to modulate the electron shuttling from the FAD of the GOx to small water-soluble mediators dependent on the polarity and size of residue 414 and on the polarity and size of the mediator. The presented mediator binding model offers a promising possibility for the design of optimized enzyme-mediator couples.


Assuntos
Benzoquinonas/química , Glucose Oxidase/química , Glucose/química , Simulação de Acoplamento Molecular , Oxigênio/química , Engenharia de Proteínas , Domínio Catalítico , Transporte de Elétrons , Glucose Oxidase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
8.
J Nanobiotechnology ; 16(1): 2, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321021

RESUMO

BACKGROUND: Treatment of severe or chronic skin wounds is an important challenge facing medicine and a significant health care burden. Proper wound healing is often affected by bacterial infection; where biofilm formation is one of the main risks and particularly problematic because it confers protection to microorganisms against antibiotics. One avenue to prevent bacterial colonization of wounds is the use of silver nanoparticles (AgNPs); which have proved to be effective against non-multidrug-resistant and multidrug-resistant bacteria. In addition, the use of mesenchymal stem cells (MSC) is an excellent option to improve wound healing due to their capability for differentiation and release of relevant growth factors. Finally, radiosterilized pig skin (RPS) is a biomatrix successfully used as wound dressing to avoid massive water loss, which represents an excellent carrier to deliver MSC into wound beds. Together, AgNPs, RPS and MSC represent a potential dressing to control massive water loss, prevent bacterial infection and enhance skin regeneration; three essential processes for appropriate wound healing with minimum scaring. RESULTS: We synthesized stable 10 nm-diameter spherical AgNPs that showed 21- and 16-fold increase in bacteria growth inhibition (in comparison to antibiotics) against clinical strains Staphylococcus aureus and Stenotrophomonas maltophilia, respectively. RPS samples were impregnated with different AgNPs suspensions to develop RPS-AgNPs nanocomposites with different AgNPs concentrations. Nanocomposites showed inhibition zones, in Kirby-Bauer assay, against both clinical bacteria tested. Nanocomposites also displayed antibiofilm properties against S. aureus and S. maltophilia from RPS samples impregnated with 250 and 1000 ppm AgNPs suspensions, respectively. MSC were isolated from adipose tissue and seeded on nanocomposites; cells survived on nanocomposites impregnated with up to 250 ppm AgNPs suspensions, showing 35% reduction in cell viability, in comparison to cells on RPS. Cells on nanocomposites proliferated with culture days, although the number of MSC on nanocomposites at 24 h of culture was lower than that on RPS. CONCLUSIONS: AgNPs with better bactericide activity than antibiotics were synthesized. RPS-AgNPs nanocomposites impregnated with 125 and 250 ppm AgNPs suspensions decreased bacterial growth, decreased biofilm formation and were permissive for survival and proliferation of MSC; constituting promising multi-functional dressings for successful treatment of skin wounds.


Assuntos
Bandagens , Biofilmes/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Nanocompostos/química , Prata/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Soluções , Esterilização , Sus scrofa
9.
Nature ; 475(7356): 394-7, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743475

RESUMO

A substantial proportion of the genome encodes membrane proteins that are delivered to the endoplasmic reticulum by dedicated targeting pathways. Membrane proteins that fail targeting must be rapidly degraded to avoid aggregation and disruption of cytosolic protein homeostasis. The mechanisms of mislocalized protein (MLP) degradation are unknown. Here we reconstitute MLP degradation in vitro to identify factors involved in this pathway. We find that nascent membrane proteins tethered to ribosomes are not substrates for ubiquitination unless they are released into the cytosol. Their inappropriate release results in capture by the Bag6 complex, a recently identified ribosome-associating chaperone. Bag6-complex-mediated capture depends on the presence of unprocessed or non-inserted hydrophobic domains that distinguish MLPs from potential cytosolic proteins. A subset of these Bag6 complex 'clients' are transferred to TRC40 for insertion into the membrane, whereas the remainder are rapidly ubiquitinated. Depletion of the Bag6 complex selectively impairs the efficient ubiquitination of MLPs. Thus, by its presence on ribosomes that are synthesizing nascent membrane proteins, the Bag6 complex links targeting and ubiquitination pathways. We propose that such coupling allows the fast tracking of MLPs for degradation without futile engagement of the cytosolic folding machinery.


Assuntos
Príons/metabolismo , Ubiquitinação , Animais , ATPases Transportadoras de Arsenito/metabolismo , Bovinos , Membrana Celular/metabolismo , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Neuropeptídeo Y/química , Príons/química , Prolactina/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Precursores de Proteínas/química , Sinais Direcionadores de Proteínas/fisiologia , Estrutura Terciária de Proteína , Transporte Proteico , Ribossomos/metabolismo , Ubiquitina/metabolismo
10.
Crit Rev Biochem Mol Biol ; 49(5): 413-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25029904

RESUMO

In addition to the small and large ribosomal subunits, aminoacyl-tRNAs, and an mRNA, cellular protein synthesis is dependent on translation factors. The eukaryotic translation initiation factor 5A (eIF5A) and its bacterial ortholog elongation factor P (EF-P) were initially characterized based on their ability to stimulate methionyl-puromycin (Met-Pmn) synthesis, a model assay for protein synthesis; however, the function of these factors in cellular protein synthesis has been difficult to resolve. Interestingly, a conserved lysine residue in eIF5A is post-translationally modified to hypusine and the corresponding lysine residue in EF-P from at least some bacteria is modified by the addition of a ß-lysine moiety. In this review, we provide a summary of recent data that have identified a novel role for the translation factor eIF5A and its hypusine modification in the elongation phase of protein synthesis and more specifically in stimulating the production of proteins containing runs of consecutive proline residues.


Assuntos
Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/química , Peptídeos/metabolismo , Proteínas de Ligação a RNA/química , Ribossomos/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
11.
J Plast Reconstr Aesthet Surg ; 94: 20-26, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733713

RESUMO

BACKGROUND: Ultrasound-assisted liposuction (UAL) has become popular because of its favorable outcomes in fat emulsification, blood loss reduction, and skin tightening. This study aimed to compare the effects of two UAL devices on the abdomen by assessing postsurgery skin biomechanical properties. METHODS: This single-blind, prospective study (2020-2022) involved 13 liposuction procedures performed on patients without chronic diseases. Each patient's abdomen was divided vertically from the xiphoid to the perineum. Vibration amplification of sound energy at resonance (VASER)-assisted liposuction (Solta Medical, Inc., Hayward, CA) was performed on one half, while the other half underwent liposuction with high-frequency ultrasound energy (HEUS)-assisted technology. Skin biomechanical measurements, including distensibility, net elasticity, biological elasticity, hydration, erythema, melanin, and skin firmness, were taken at 12 and 24 months postsurgery, focusing on the anterior abdomen, 8 cm to the right and left of the umbilicus. RESULTS: Analysis of the above skin biomechanical measurements revealed no significant differences between the HEUS and VASER devices, except for skin firmness, which showed a notable increase following HEUS surgery. Patient-perceived clinical differences were assessed via nonvalidated questionnaires, revealing no distinctions between devices. CONCLUSION: Biomechanical skin results post-UAL surgery with these devices on the abdomen were not significantly different, although HEUS revealed increased skin firmness. This suggests that HEUS-assisted technology, akin to other devices, is a viable option for UAL procedures.


Assuntos
Lipectomia , Humanos , Lipectomia/métodos , Lipectomia/instrumentação , Feminino , Estudos Prospectivos , Adulto , Método Simples-Cego , Pessoa de Meia-Idade , Masculino , Abdome/cirurgia , Terapia por Ultrassom/métodos , Fenômenos Fisiológicos da Pele
12.
Polymers (Basel) ; 15(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37835986

RESUMO

Cross-linked polymer blends from natural compounds, namely gelatin (Gel), chitosan (CS), and synthetic poly (vinyl alcohol) (PVA), have received increasing scrutiny because of their versatility, biocompatibility, and ease of use for tissue engineering. Previously, Gel/CS/PVA [1:1:1] hydrogel produced via the freeze-drying process presented enhanced mechanical properties. This study aimed to investigate the biocompatibility and chondrogenic potential of a steam-sterilized Gel/CS/PVA hydrogel using differentiation of human adipose-derived mesenchymal stromal cells (AD-hMSC) and cartilage marker expression. AD-hMSC displayed fibroblast-like morphology, 90% viability, and 69% proliferative potential. Mesenchymal profiles CD73 (98.3%), CD90 (98.6%), CD105 (97.0%), CD34 (1.11%), CD45 (0.27%), HLA-DR (0.24%); as well as multilineage potential, were confirmed. Chondrogenic differentiation of AD-hMSC in monolayer revealed the formation of cartilaginous nodules composed of glycosaminoglycans after 21 days. Compared to nonstimulated cells, hMSC-derived chondrocytes shifted the expression of CD49a from 2.82% to 40.6%, CD49e from 51.4% to 92.2%, CD54 from 9.66 to 37.2%, and CD151 from 45.1% to 75.8%. When cultured onto Gel/CS/PVA hydrogel during chondrogenic stimulation, AD-hMSC changed to polygonal morphology, and chondrogenic nodules increased by day 15, six days earlier than monolayer-differentiated cells. SEM analysis showed that hMSC-derived chondrocytes adhered to the surface with extended filopodia and abundant ECM formation. Chondrogenic nodules were positive for aggrecan and type II collagen, two of the most abundant components in cartilage. This study supports the biocompatibility of AD-hMSC onto steam-sterilized GE/CS/PVA hydrogels and its improved potential for chondrocyte differentiation. Hydrogel properties were not altered after steam sterilization, which is relevant for biosafety and biomedical purposes.

13.
Pharmaceutics ; 15(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631319

RESUMO

Radiosterilized pig skin (RPS) has been used as a dressing for burns since the 1980s. Its similarity to human skin in terms of the extracellular matrix (ECM) allows the attachment of mesenchymal stem cells, making it ideal as a scaffold to create cellularized constructs. The use of silver nanoparticles (AgNPs) has been proven to be an appropriate alternative to the use of antibiotics and a potential solution against multidrug-resistant bacteria. RPS can be impregnated with AgNPs to develop nanomaterials capable of preventing wound infections. The main goal of this study was to assess the use of RPS as a scaffold for autologous fibroblasts (Fb), keratinocytes (Kc), and mesenchymal stem cells (MSC) in the treatment of second-degree burns (SDB). Additionally, independent RPS samples were impregnated with AgNPs to enhance their properties and further develop an antibacterial dressing that was initially tested using a burn mouse model. This protocol was approved by the Research and Ethics Committee of the INRLGII (INR 20/19 AC). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis of the synthesized AgNPs showed an average size of 10 nm and rounded morphology. Minimum inhibitory concentrations (MIC) and Kirby-Bauer assays indicated that AgNPs (in solution at a concentration of 125 ppm) exhibit antimicrobial activity against the planktonic form of S. aureus isolated from burned patients; moreover, a log reduction of 1.74 ± 0.24 was achieved against biofilm formation. The nanomaterial developed with RPS impregnated with AgNPs solution at 125 ppm (RPS-AgNPs125) facilitated wound healing in a burn mouse model and enhanced extracellular matrix (ECM) deposition, as analyzed by Masson's staining in histological samples. No silver was detected by energy-dispersive X-ray spectroscopy (EDS) in the skin, and neither by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in different organs of the mouse burn model. Calcein/ethidium homodimer (EthD-1), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), and scanning electron microscopy (SEM) analysis demonstrated that Fb, Kc, and MSC could attach to RPS with over 95% cell viability. Kc were capable of releasing FGF at 0.5 pg above control levels, as analyzed by ELISA assays. An autologous RPS-Fb-Kc construct was implanted in a patient with SDB and compared to an autologous skin graft. The patient recovery was assessed seven days post-implantation, and the patient was followed up at one, two, and three months after the implantation, exhibiting favorable recovery compared to the gold standard, as measured by the cutometer. In conclusion, RPS effectively can be used as a scaffold for the culture of Fb, Kc, and MSC, facilitating the development of a cellularized construct that enhances wound healing in burn patients.

14.
J Biotechnol ; 349: 53-64, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35341894

RESUMO

In recent years, acceleration of development timelines has become a major focus within the biopharmaceutical industry to bring innovative therapies faster to patients. However, in order to address a high unmet medical need even faster further acceleration potential has to be identified to transform "speed-to-clinic" concepts into "warp-speed" development programs. Recombinant Chinese hamster ovary (CHO) cell lines are the predominant expression system for monoclonal antibodies (mAbs) and are routinely generated by random transgene integration (RTI) of the genetic information into the host cell genome. This process, however, exhibits considerable challenges such as the requirement for a time-consuming clone screening process to identify a suitable clonally derived manufacturing cell line. Hence, RTI represents an error prone and tedious method leading to long development timelines until availability of Good Manufacturing Practice (GMP)-grade drug substance (DS). Transposase-mediated semi-targeted transgene integration (STI) has been recently identified as a promising alternative to RTI as it allows for a more rapid generation of high-performing and stable production cell lines. In this report, we demonstrate how a STI technology was leveraged to develop a very robust DS manufacturing process based on a stable pool cell line at unprecedented pace. Application of the novel strategy resulted in the manufacturing of GMP-grade DS at 2,000 L scale in less than three months paving the way for a start of Phase I clinical trials only six months after transfection. Finally, using a clonally derived production cell line, which was established from the parental stable pool, we were able to successfully implement a process with an increased mAb titer of up to 5 g per liter at the envisioned commercial scale (12,000 L) within eight months.


Assuntos
Anticorpos Monoclonais , Infecções Sexualmente Transmissíveis , Aceleração , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Infecções Sexualmente Transmissíveis/tratamento farmacológico , Transposases
15.
Plast Reconstr Surg Glob Open ; 5(12): e1594, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29632773

RESUMO

BACKGROUND: Microtia is a congenital auricular deformity that occurs in 1:5,000-10,000 births. It can cause severe impairment to the patient's self-esteem and problems regarding social integration. Multiple measures have been described in attempt to better operative outcomes of these patients. We used computed tomography (CT) angiography to analyze the vascular pattern of the auricular region before surgery. METHODS: Fourteen patients with unilateral microtia were included. All underwent CT angiogram plus tridimensional reconstruction. Both healthy and microtic auricles were analyzed descriptively in terms of main arterial supply, pattern, diameter of subbranches, and angulation. The sample was divided in 2 age groups for better understanding of the data. RESULTS: Blood supply to the auricle was found to depend on 2 main vessels: temporal superficial artery (TSA) and its subbranches (superior, middle, and lower branch) and posterior auricular (PA) artery. In the microtic group, TSA was the dominant artery in 13 of 14 cases (92%). Superior, middle, and inferior branches were present in 4, 3, and 0 cases, respectively. Three of the microtic auricles presented supply from PA artery, from which in 1 case, it represented the only supply to the region. CONCLUSIONS: There is wide variability in the blood supply of both healthy and microtic auricles; however, we were able to identify some tendencies in our sample. Further research is needed to prove the benefit of a preoperative imaging study in these patients. Still, in our experience, we found it useful as a complement for surgical planning.

16.
Biosens Bioelectron ; 50: 84-90, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23835222

RESUMO

Glucose oxidase is an oxidoreductase exhibiting a high ß-D-glucose specificity and high stability which renders glucose oxidase well-suited for applications in diabetes care. Nevertheless, GOx activity is highly oxygen dependent which can lead to inaccuracies in amperometric ß-D-glucose determinations. Therefore a directed evolution campaign with two rounds of random mutagenesis (SeSaM followed by epPCR), site saturation mutagenesis studies on individual positions, and one simultaneous site saturation library (OmniChange; 4 positions) was performed. A diabetes care well suited mediator (quinone diimine) was selected and the GOx variant (T30V I94V) served as starting point. For directed GOx evolution a microtiter plate detection system based on the quinone diimine mediator was developed and the well-known ABTS-assay was applied in microtiter plate format to validate oxygen independency of improved GOx variants. Two iterative rounds of random diversity generation and screening yielded to two subsets of amino acid positions which mainly improved activity (A173, A332) and oxygen independency (F414, V560). Simultaneous site saturation of all four positions with a reduced subset of amino acids using the OmniChange method yielded finally variant V7 with a 37-fold decreased oxygen dependency (mediator activity: 7.4 U/mg WT, 47.5 U/mg V7; oxygen activity: 172.3 U/mg WT, 30.1 U/mg V7). V7 is still highly ß-D-glucose specific, highly active with the quinone diimine mediator and thermal resistance is retained (prerequisite for GOx coating of diabetes test stripes). The latter properties and V7's oxygen insensitivity make V7 a very promising candidate to replace standard GOx in diabetes care applications.


Assuntos
Aspergillus niger/enzimologia , Técnicas Biossensoriais/métodos , Evolução Molecular Direcionada , Glucose Oxidase/genética , Glucose/análise , Aspergillus niger/genética , Evolução Molecular Direcionada/métodos , Glucose/metabolismo , Glucose Oxidase/metabolismo , Oxigênio/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA