RESUMO
Lung inflammation, caused by acute exposure to ozone (O3), one of the six criteria air pollutants, is a significant source of morbidity in susceptible individuals. Alveolar macrophages (AMØs) are the most abundant immune cells in the normal lung, and their number increases after O3 exposure. However, the role of AMØs in promoting or limiting O3-induced lung inflammation has not been clearly defined. In this study, we used a mouse model of acute O3 exposure, lineage tracing, genetic knockouts, and data from O3-exposed human volunteers to define the role and ontogeny of AMØs during acute O3 exposure. Lineage-tracing experiments showed that 12, 24, and 72 hours after exposure to O3 (2 ppm) for 3 hours, all AMØs were of tissue-resident origin. Similarly, in humans exposed to filtered air and O3 (200 ppb) for 135 minutes, we did not observe at â¼21 hours postexposure an increase in monocyte-derived AMØs by flow cytometry. Highlighting a role for tissue-resident AMØs, we demonstrate that depletion of tissue-resident AMØs with clodronate-loaded liposomes led to persistence of neutrophils in the alveolar space after O3 exposure, suggesting that impaired neutrophil clearance (i.e., efferocytosis) leads to prolonged lung inflammation. Moreover, depletion of tissue-resident AMØs demonstrated reduced clearance of intratracheally instilled apoptotic Jurkat cells, consistent with reduced efferocytosis. Genetic ablation of MerTK (MER proto-oncogene, tyrosine kinase), a key receptor involved in efferocytosis, also resulted in impaired clearance of apoptotic neutrophils after O3 exposure. Overall, these findings underscore the pivotal role of tissue-resident AMØs in resolving O3-induced inflammation via MerTK-mediated efferocytosis.
Assuntos
Macrófagos Alveolares , Ozônio , Fagocitose , Proto-Oncogene Mas , c-Mer Tirosina Quinase , Ozônio/farmacologia , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Animais , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Humanos , Fagocitose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/patologia , Camundongos Knockout , Masculino , Inflamação/metabolismo , Inflamação/patologia , Inflamação/induzido quimicamente , Apoptose/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , EferocitoseRESUMO
Damage associated molecular patterns (DAMPs) are molecules released from dead/dying cells following toxicant and/or environmental exposures that activate the immune response through binding of pattern recognition receptors (PRRs). Excessive production of DAMPs or failed clearance leads to chronic inflammation and delayed inflammation resolution. One category of DAMPs are oxidized phospholipids (oxPLs) produced upon exposure to high levels of oxidative stress, such as following ozone (O3) induced inflammation. OxPLs are bound by multiple classes of PRRs that include scavenger receptors (SRs) such as SR class B-1 (SR-BI) and toll-like receptors (TLRs). Interactions between oxPLs and PRRs appear to regulate inflammation; however, the role of SR-BI in oxPL-induced lung inflammation has not been defined. Therefore, we hypothesize that SR-BI is critical in protecting the lung from oxPL-induced pulmonary inflammation/injury. To test this hypothesis, C57BL/6J (WT) female mice were dosed with oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (oxPAPC) by oropharyngeal aspiration which increased pulmonary SR-BI expression. Following oxPAPC exposure, SR-BI deficient (SR-BI-/-) mice exhibited increased lung pathology and inflammatory cytokine/chemokine production. Lipidomic analysis revealed that SR-BI-/- mice had an altered pulmonary lipidome prior to and following oxPAPC exposure, which correlated with increased oxidized phosphatidylcholines (PCs). Finally, we characterized TLR4-mediated activation of NF-κB following oxPAPC exposure and discovered that SR-BI-/- mice had increased TLR4 mRNA expression in lung tissue and macrophages, increased nuclear p65, and decreased cytoplasmic IκBα. Overall, we conclude that SR-BI is required for limiting oxPAPC-induced lung pathology by maintaining lipid homeostasis, reducing oxidized PCs, and attenuating TLR4-NF-κB activation, thereby preventing excessive and persistent inflammation.
Assuntos
Fosfolipídeos , Pneumonia , Animais , Feminino , Camundongos , Proteínas de Transporte , Inflamação/induzido quimicamente , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Receptor 4 Toll-Like/metabolismoRESUMO
The lung mucosa functions as a principal barrier between the body and inhaled environmental irritants and pathogens. Precise and targeted surveillance mechanisms are required at this lung-environment interface to maintain homeostasis and preserve gas exchange. This is performed by the innate immune system, a germline-encoded system that regulates initial responses to foreign irritants and pathogens. Environmental pollutants, such as particulate matter (PM), ozone (O3), and other products of combustion (NO2, SO3, etc.), both stimulate and disrupt the function of the innate immune system of the lung, leading to the potential for pathologic consequences. PURPOSE OF REVIEW: The purpose of this review is to explore recent discoveries and investigations into the role of the innate immune system in responding to environmental exposures. This focuses on mechanisms by which the normal function of the innate immune system is modified by environmental agents leading to disruptions in respiratory function. RECENT FINDINGS: This is a narrative review of mechanisms of pulmonary innate immunity and the impact of environmental exposures on these responses. Recent findings highlighted in this review are categorized by specific components of innate immunity including epithelial function, macrophages, pattern recognition receptors, and the microbiome. Overall, the review supports broad impacts of environmental exposures to alterations to normal innate immune functions and has important implications for incidence and exacerbations of lung disease. The innate immune system plays a critical role in maintaining pulmonary homeostasis in response to inhaled air pollutants. As many of these agents are unable to be mitigated, understanding their mechanistic impact is critical to develop future interventions to limit their pathologic consequences.
Assuntos
Poluentes Atmosféricos , Imunidade Inata/imunologia , Pneumopatias , Mucosa Respiratória/imunologia , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/imunologia , Humanos , Pulmão/imunologia , Pulmão/fisiopatologia , Pneumopatias/etiologia , Pneumopatias/imunologia , Pneumopatias/fisiopatologia , Ozônio/efeitos adversos , Ozônio/imunologia , Material Particulado/efeitos adversos , Material Particulado/imunologia , Mucosa Respiratória/fisiopatologiaRESUMO
Several studies report that ashwagandha, a traditional Ayurvedic supplement, has anti-inflammatory properties. Type 2 (T2) asthma is characterized by eosinophilic airway inflammation. We hypothesized that allergen-induced eosinophilic airway inflammation in mice would be reduced following administration of Withaferin A (WFA), the primary active phytochemical in Ashwagandha. C57BL/6J mice were given 10 total intra-peritoneal injections of 2 mg/kg WFA or vehicle control, concurrent with 6 total intranasal administrations of 50 µg house dust mite extract (HDM) or saline control over 2 weeks. We observed that treatment with WFA reduced allergen-induced peribronchial inflammation and airway eosinophil counts compared to mice treated with controls. In addition, we observed that treatment with WFA reduced lung levels of interleukin-25 (IL-25) but increased lung gene expression levels of its co-receptor, Il17ra, in HDM-challenged mice compared to HDM-challenged mice that received the vehicle control. This study pinpoints a potential mechanism by which WFA modulates allergen-induced airway eosinophilia via the IL-25 signaling pathway. Future studies will investigate the effects of WFA administration on lung eosinophilia and IL-25 signaling in the context of chronic allergen-challenge.
RESUMO
Ozone (O3), a criterion air pollutant produced as a product of internal combustion, generates increased inflammation, lung permeability, and airway hyperreactivity when exposed to rodents in laboratory settings. Airway hyperreactivity is defined as an exaggerated acute obstructive response of the airways to one or more nonspecific stimuli. Lung permeability is a measure of barrier functions that separate internal and external environments to limit access of pathogens and other noxious material. By modeling in vivo O3 exposure in rodents, this allows investigators to explore pulmonary and nonpulmonary O3 effects as a means of understanding its impact on human health and lung function. Furthermore, direct effects of O3 on epithelial permeability can be defined using in vitro exposures to airway epithelial cells. This chapter will focus on methods of generating O3 and then exposing rodents and cultured epithelial cells in laboratory settings.