Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(1): 634-644, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33347746

RESUMO

Medium-chain carboxylic acids (MCCAs) are valuable platform chemicals and can be produced from waste biomass sources or syngas fermentation effluent through microbial chain elongation. We have previously demonstrated successful approaches to separate >90% purity oil with different MCCAs (MCCA oil) by integrating the anaerobic bioprocess with membrane-based liquid-liquid extraction (pertraction) and membrane electrolysis. However, two-compartment membrane electrolysis unit without pertraction was not able to separate MCCA oil. Therefore, we developed a five-compartment electrodialysis/phase separation cell (ED/PS). First, we tested an ED/PS cell in series with pertraction and achieved a maximum MCCA-oil flux of 1.7 × 103 g d-1 per projected area (m2) (19 mL oil d-1) and MCCA-oil transfer efficiency [100% × moles MCCA-oil moles electrons-1] of 74% at 15 A m-2. This extraction system at 15 A m-2 demonstrated a ∼10 times lower electric-power consumption (1.1 kWh kg-1 MCCA oil) than membrane electrolysis in series with pertraction (9.9 kWh kg-1 MCCA oil). Second, we evaluated our ED/PS as a stand-alone unit when integrated with the anaerobic bioprocess and demonstrated that we can selectively extract and separate MCCA oil directly from chain-elongating bioreactor broth with just an abiotic electrochemical cell. However, the electric-power consumption increased considerably due to the lower MCCA concentrations in the bioreactor broth compared to the pertraction broth.


Assuntos
Reatores Biológicos , Ácidos Carboxílicos , Biomassa , Eletrólise , Fermentação
2.
Environ Sci Technol ; 52(15): 8538-8547, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29968467

RESUMO

Pyrogenic carbon contains redox-active functional groups and polyaromatic carbon matrices that are both capable of transferring electrons. Several techniques have been explored to characterize the individual electron transfer process of either functional groups or carbon matrices individually. However, simultaneous analysis of both processes remains challenging. Using an approach that employs a four-electrode configuration and dual-interface electron transfer detection, we distinguished the electron transfer by functional groups from the electron transfer by carbon matrices and simultaneously quantified their relative contribution to the total electron transfer to and from pyrogenic carbon. Results show that at low to intermediate pyrolysis temperatures (400-500 °C), redox cycling of functional groups is the major mechanism with a contribution of 100-78% to the total electron transfer; whereas at high temperatures (650-800 °C), direct electron transfer of carbon matrices dominates electron transfer with a contribution of 87-100%. Spectroscopic and diffraction analyses of pyrogenic carbon support the electrochemical measurements by showing a molecular-level structural transition from an enrichment in functional groups to an enrichment in nanosized graphene domains with increasing pyrolysis temperatures. The method described in this study provides a new analytical approach to separately quantify the relative importance of different electron transfer pathways in natural pyrogenic carbon and has potential applications for engineered carbon materials such as graphene oxides.


Assuntos
Carbono , Grafite , Transporte de Elétrons , Elétrons , Oxirredução
3.
Biodegradation ; 26(2): 151-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25750156

RESUMO

Azo dyes are the most widely used coloring agents in the textile industry, but are difficult to treat. When textile effluents are discharged into waterways, azo dyes and their degradation products are known to be environmentally toxic. An electrochemical system consisting of a graphite-plate anode and a stainless-steel mesh cathode was placed into a lab-scale anaerobic bioreactor to evaluate the removal of an azo dye (Direct Black 22) from synthetic textile wastewater. At applied potentials of 2.5 and 3.0 V when water electrolysis occurs, no improvement in azo dye removal efficiency was observed compared to the control reactor (an integrated system with electrodes but without an applied potential). However, applying such electric potentials produces oxygen via electrolysis and promoted the aerobic degradation of aromatic amines, which are toxic, intermediate products of anaerobic azo dye degradation. The removal of these amines indicates a decrease in overall toxicity of the effluent from a single-stage anaerobic bioreactor, which warrants further optimization in anaerobic digestion.


Assuntos
Compostos Azo/isolamento & purificação , Corantes/isolamento & purificação , Naftalenos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Aminas/química , Anaerobiose , Compostos Azo/química , Biodegradação Ambiental , Reatores Biológicos , Corantes/química , Eletrodos , Eletrólise , Humanos , Naftalenos/química , Oxigênio/química , Indústria Têxtil , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química , Purificação da Água/métodos
4.
Nat Commun ; 12(1): 4119, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226558

RESUMO

Northern peatlands are experiencing more frequent and severe fire events as a result of changing climate conditions. Recent studies show that such a fire-regime change imposes a direct climate-warming impact by emitting large amounts of carbon into the atmosphere. However, the fires also convert parts of the burnt biomass into pyrogenic carbon. Here, we show a potential climate-cooling impact induced by fire-derived pyrogenic carbon in laboratory incubations. We found that the accumulation of pyrogenic carbon reduced post-fire methane production from warm (32 °C) incubated peatland soils by 13-24%. The redox-cycling, capacitive, and conductive electron transfer mechanisms in pyrogenic carbon functioned as an electron snorkel, which facilitated extracellular electron transfer and stimulated soil alternative microbial respiration to suppress methane production. Our results highlight an important, but overlooked, function of pyrogenic carbon in neutralizing forest fire emissions and call for its consideration in the global carbon budget estimation.


Assuntos
Carbono/metabolismo , Elétrons , Metano/biossíntese , Incêndios Florestais , Bactérias , Biomassa , Dióxido de Carbono , Clima , Mudança Climática , Ecossistema , Incêndios , Geobacter , Laboratórios , Solo
5.
Front Microbiol ; 10: 110, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804906

RESUMO

Syntrophic microbial partnerships are found in many environments and play critical roles in wastewater treatment, global nutrient cycles, and gut systems. An important type of syntrophy for the anaerobic conversion of carboxylic acids is H2 syntrophy. In this type of microbial partnership, dissolved H2 is produced by a bacterium and rapidly consumed by an archeon (methanogen), resulting in methane gas. This is referred to as interspecies H2 transfer, and some conversions rely on this mechanism to become thermodynamically feasible. For this reason, syntrophic partners are often not possible to separate in the lab, which hampers the full understanding of their physiology. Bioelectrochemical systems (BESs) may show promise to ultimately separate and study the behavior of the syntrophic bacterium by employing an abiotic H2 oxidation reaction at the anode, actively removing dissolved H2. Here, we performed a proof-of-concept study to ascertain whether an H2-removing anode can: (1) provide a growth advantage for the syntrophic bacterium; and (2) compete with the methanogenic partner. A mathematical model was developed to design a BES to perform competition experiments. Indeed, the operated BES demonstrated the ability to provide a growth advantage to the syntrophic bacterium Syntrophus aciditrophicus compared to its methanogenic partner Methanospirillum hungatei when grown in co-culture. Further, the BES provided the never-before isolated Syntrophomonas zehnderi with a growth advantage compared to Methanobacterium formicicum. Our results demonstrate a potential to use this BES to enrich H2-sensitive syntrophic bacteria, and gives prospects for the development of an effective method for the separation of obligate syntrophs.

6.
Nat Commun ; 8: 14873, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361882

RESUMO

Surface functional groups constitute major electroactive components in pyrogenic carbon. However, the electrochemical properties of pyrogenic carbon matrices and the kinetic preference of functional groups or carbon matrices for electron transfer remain unknown. Here we show that environmentally relevant pyrogenic carbon with average H/C and O/C ratios of less than 0.35 and 0.09 can directly transfer electrons more than three times faster than the charging and discharging cycles of surface functional groups and have a 1.5 V potential range for biogeochemical reactions that invoke electron transfer processes. Surface functional groups contribute to the overall electron flux of pyrogenic carbon to a lesser extent with greater pyrolysis temperature due to lower charging and discharging capacities, although the charging and discharging kinetics remain unchanged. This study could spur the development of a new generation of biogeochemical electron flux models that focus on the bacteria-carbon-mineral conductive network.

7.
Chem Commun (Camb) ; 51(31): 6847-50, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25792085

RESUMO

We had extracted n-caproate from bioreactor broth. Here, we introduced in-line membrane electrolysis that utilized a pH gradient between two chambers to transfer the product into undissociated n-caproic acid without chemical addition. Due to the low maximum solubility of this acid, selective phase separation occurred, allowing simple product separation into an oily liquid containing ∼90% n-caproic and n-caprylic acid.


Assuntos
Caproatos/química , Caproatos/isolamento & purificação , Caprilatos/química , Caprilatos/isolamento & purificação , Eletrólise/instrumentação , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA