Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 587(7833): 210-213, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177669

RESUMO

Light elements were produced in the first few minutes of the Universe through a sequence of nuclear reactions known as Big Bang nucleosynthesis (BBN)1,2. Among the light elements produced during BBN1,2, deuterium is an excellent indicator of cosmological parameters because its abundance is highly sensitive to the primordial baryon density and also depends on the number of neutrino species permeating the early Universe. Although astronomical observations of primordial deuterium abundance have reached percent accuracy3, theoretical predictions4-6 based on BBN are hampered by large uncertainties on the cross-section of the deuterium burning D(p,γ)3He reaction. Here we show that our improved cross-sections of this reaction lead to BBN estimates of the baryon density at the 1.6 percent level, in excellent agreement with a recent analysis of the cosmic microwave background7. Improved cross-section data were obtained by exploiting the negligible cosmic-ray background deep underground at the Laboratory for Underground Nuclear Astrophysics (LUNA) of the Laboratori Nazionali del Gran Sasso (Italy)8,9. We bombarded a high-purity deuterium gas target10 with an intense proton beam from the LUNA 400-kilovolt accelerator11 and detected the γ-rays from the nuclear reaction under study with a high-purity germanium detector. Our experimental results settle the most uncertain nuclear physics input to BBN calculations and substantially improve the reliability of using primordial abundances to probe the physics of the early Universe.

2.
Phys Rev Lett ; 122(9): 092701, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932526

RESUMO

We report the first measurement of low-energy proton-capture cross sections of ^{124}Xe in a heavy-ion storage ring. ^{124}Xe^{54+} ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The ^{125}Cs reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.

3.
Phys Rev Lett ; 102(23): 232502, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19658929

RESUMO

The 3He(alpha,gamma)7Be reaction presently represents the largest nuclear uncertainty in the predicted solar neutrino flux and has important implications on the big bang nucleosynthesis, i.e., the production of primordial 7Li. We present here the results of an experiment using the recoil separator ERNA (European Recoil separator for Nuclear Astrophysics) to detect directly the 7Be ejectiles. In addition, off-beam activation and coincidence gamma-ray measurements were performed at selected energies. At energies above 1 MeV a large discrepancy compared to previous results is observed both in the absolute value and in the energy dependence of the cross section. Based on the available data and models, a robust estimate of the cross section at the astrophysical relevant energies is proposed.

4.
Phys Rev Lett ; 98(25): 252502, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17678018

RESUMO

Off-energy-shell effects in p - p scattering have been investigated at p - p relative energies from 600 down to 80 keV applying the Trojan horse method (THM) to the p + d --> p + p + n reaction at 5 MeV. In contrast with the on-energy-shell case, no Coulomb-nuclear interference minimum has been found in the extracted THM p - p cross section, due to the suppression of the Coulomb amplitude as predicted by the half-off-energy shell calculations. This hypothesis is strengthened by the agreement between THM p - p data and calculated on-energy-shell n + n, n + p and nuclear p + p cross sections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA