Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 18(23): 15154-15166, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38808726

RESUMO

Platinum ditelluride (1T-PtTe2) is a two-dimensional (2D) topological semimetal with a distinctive band structure and flexibility of van der Waals integration as a promising candidate for future electronics and spintronics. Although the synthesis of large-scale, uniform, and highly crystalline films of 2D semimetals system is a prerequisite for device application, the synthetic methods meeting these criteria are still lacking. Here, we introduce an approach to synthesize highly oriented 2D topological semimetal PtTe2 using a thermally assisted conversion called tellurization, which is a cost-efficient method compared to the other epitaxial deposition methods. We demonstrate that achieving highly crystalline 1T-PtTe2 using tellurization is not dependent on epitaxy but rather relies on two critical factors: (i) the crystallinity of the predeposited platinum (Pt) film and (ii) the surface coverage ratio of the Pt film considering lateral lattice expansion during transformation. By optimizing the surface coverage ratio of the epitaxial Pt film, we successfully obtained 2 in. wafer-scale uniformity without in-plane misalignment between antiparallelly oriented domains. The electronic band structure of 2D topological PtTe2 is clearly resolved in momentum space, and we observed an interesting 6-fold gapped Dirac cone at the Fermi surface. Furthermore, ultrahigh electrical conductivity down to ∼3.8 nm, which is consistent with that of single crystal PtTe2, was observed, proving its ultralow defect density.

2.
Nat Commun ; 13(1): 1844, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383178

RESUMO

The capability to finely tailor material thickness with simultaneous atomic precision and non-invasivity would be useful for constructing quantum platforms and post-Moore microelectronics. However, it remains challenging to attain synchronized controls over tailoring selectivity and precision. Here we report a protocol that allows for non-invasive and atomically digital etching of van der Waals transition-metal dichalcogenides through selective alloying via low-temperature thermal diffusion and subsequent wet etching. The mechanism of selective alloying between sacrifice metal atoms and defective or pristine dichalcogenides is analyzed with high-resolution scanning transmission electron microscopy. Also, the non-invasive nature and atomic level precision of our etching technique are corroborated by consistent spectral, crystallographic, and electrical characterization measurements. The low-temperature charge mobility of as-etched MoS2 reaches up to 1200 cm2 V-1s-1, comparable to that of exfoliated pristine counterparts. The entire protocol represents a highly precise and non-invasive tailoring route for material manipulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA