Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
J Am Chem Soc ; 146(9): 5759-5780, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38373254

RESUMO

This perspective highlights advances in the preparation and understanding of metal nanoclusters stabilized by organic ligands with a focus on N-heterocyclic carbenes (NHCs). We demonstrate the need for a clear understanding of the relationship between NHC properties and their resulting metal nanocluster structure and properties. We emphasize the importance of balancing nanocluster stability with the introduction of reactive sites for catalytic applications and the importance of a better understanding of how these clusters interact with their environments for effective use in biological applications. The impact of atom-scale simulations, development of atomic interaction potentials suitable for large-scale molecular dynamics simulations, and a deeper understanding of the mechanisms behind synthetic methods and physical properties (e.g., the bright fluorescence displayed by many clusters) are emphasized.

2.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450733

RESUMO

We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe-Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn-Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.

3.
J Am Chem Soc ; 145(27): 14697-14704, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37377151

RESUMO

Understanding the dynamics of Förster resonance energy transfer (FRET) in fluorophore-functionalized nanomaterials is critical for developing and utilizing such materials in biomedical imaging and optical sensing applications. However, structural dynamics of noncovalently bound systems have a significant effect on the FRET properties affecting their applications in solutions. Here, we study the dynamics of the FRET in atomistic detail by disclosing the structural dynamics of the noncovalently bound azadioxotriangulenium dye (KU) and atomically precise gold nanocluster (Au25(p-MBA)18, p-MBA = para-mercaptobenzoic acid) with a combination of experimental and computational methods. Two distinct subpopulations involved in the energy transfer process between the KU dye and the Au25(p-MBA)18 nanoclusters were resolved by time-resolved fluorescence experiments. Molecular dynamics simulations revealed that KU is bound to the surface of Au25(p-MBA)18 by interacting with the p-MBA ligands as a monomer and as a π-π stacked dimer where the center-to-center distance of the monomers to Au25(p-MBA)18 is separated by ∼0.2 nm, thus explaining the experimental observations. The ratio of the observed energy transfer rates was in reasonably good agreement with the well-known 1/R6 distance dependence for FRET. This work discloses the structural dynamics of the noncovalently bound nanocluster-based system in water solution, providing new insight into the dynamics and energy transfer mechanism of the fluorophore-functionalized gold nanocluster at an atomistic level.

4.
J Am Chem Soc ; 145(19): 10721-10729, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37155337

RESUMO

DNA-stabilized silver nanoclusters (AgN-DNAs) are known to have one or two DNA oligomer ligands per nanocluster. Here, we present the first evidence that AgN-DNA species can possess additional chloride ligands that lead to increased stability in biologically relevant concentrations of chloride. Mass spectrometry of five chromatographically isolated near-infrared (NIR)-emissive AgN-DNA species with previously reported X-ray crystal structures determines their molecular formulas to be (DNA)2[Ag16Cl2]8+. Chloride ligands can be exchanged for bromides, which red-shift the optical spectra of these emitters. Density functional theory (DFT) calculations of the 6-electron nanocluster show that the two newly identified chloride ligands were previously assigned as low-occupancy silvers by X-ray crystallography. DFT also confirms the stability of chloride in the crystallographic structure, yields qualitative agreement between computed and measured UV-vis absorption spectra, and provides interpretation of the 35Cl-nuclear magnetic resonance spectrum of (DNA)2[Ag16Cl2]8+. A reanalysis of the X-ray crystal structure confirms that the two previously assigned low-occupancy silvers are, in fact, chlorides, yielding (DNA)2[Ag16Cl2]8+. Using the unusual stability of (DNA)2[Ag16Cl2]8+ in biologically relevant saline solutions as a possible indicator of other chloride-containing AgN-DNAs, we identified an additional AgN-DNA with a chloride ligand by high-throughput screening. Inclusion of chlorides on AgN-DNAs presents a promising new route to expand the diversity of AgN-DNA structure-property relationships and to imbue these emitters with favorable stability for biophotonics applications.


Assuntos
Cloretos , Prata , Cloretos/química , Prata/química , Ligantes , Cristalografia por Raios X , DNA/química
5.
J Chem Phys ; 159(17)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37909449

RESUMO

We study the prospects of using quantum Monte Carlo techniques (QMC) to optimize the electronic wavefunctions and atomic geometries of gold compounds. Complex gold nanoclusters are widely studied for diverse biochemical applications, but the dynamic correlation and relativistic effects in gold set the bar high for reliable, predictive simulation methods. Here we study selected ground state properties of few-atom gold clusters by using density functional theory (DFT) and various implementations of the variational Monte Carlo (VMC) and diffusion Monte Carlo. We show that the QMC methods mitigate the exchange-correlation (XC) approximation made in the DFT approach: the average QMC results are more accurate and significantly more consistent than corresponding DFT results based on different XC functionals. Furthermore, we use demonstrate structural optimization of selected thiolated gold clusters with between 1 and 3 gold atoms using VMC forces. The optimization workflow is demonstrably consistent, robust, and its computational cost scales with nb, where b < 3 and n is the system size. We discuss the implications of these results while laying out steps for further developments.

6.
Angew Chem Int Ed Engl ; 62(29): e202305836, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37216325

RESUMO

Fragmentation dynamics of ligated coinage metal clusters reflects their structural and bonding properties. So far methodological challenges limited probing structures of the fragments. Herein, we resolve the geometric structures of the primary fragments of [Ag29 L12 ]3- , i.e. [Ag24 L9 ]2- , [Ag19 L6 ]- and [Ag5 L3 ]- (L is 1,3-benzene dithiolate). For this, we used trapped ion mobility mass spectrometry to determine collision cross sections of the fragments and compared them to structures calculated by density functional theory. We also report that following two sequential [Ag5 L3 ]- elimination steps, further dissociation of [Ag19 L6 ]- also involves a new channel of Ag2 loss and Ag-S and C-S bond cleavages. This reflects a competition between retaining the electronic stability of 8 e- superatom cluster cores and increasing steric strain of ligands and staples. These results are also of potential interest for future soft-landing deposition studies aimed at probing catalytic behavior of Ag clusters on supports.

7.
Angew Chem Int Ed Engl ; 62(12): e202217483, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36581588

RESUMO

Understanding the origin of chirality in the nanostructured materials is essential for chiroptical and catalytic applications. Here we report a chiral AgCu superatomic cluster, [Ag22 Cu7 (C≡CR)16 (PPh3 )5 Cl6 ](PPh4 ), Ag22 Cu7 , protected by an achiral alkynyl ligand (HC≡CR: 3,5-bis(trifluoromethyl)phenylacetylene). Its crystal structure comprises a rare interpenetrating biicosahedral Ag17 Cu2 core, which is stabilized by four different types of motifs: one Cu(C≡CR)2 , four -C≡CR, two chlorides and one helical Ag5 Cu4 (C≡CR)10 (PPh3 )5 Cl4 . Structural analysis reveals that Ag22 Cu7 exhibits multiple chirality origins, including the metal core, the metal-ligand interface and the ligand layer. Furthermore, the circular dichroism spectra of R/S-Ag22 Cu7 are obtained by employing appropriate chiral molecules as optical enrichment agents. DFT calculations show that Ag22 Cu7 is an eight-electron superatom, confirm that the cluster is chirally active, and help to analyze the origins of the circular dichroism.

8.
J Am Chem Soc ; 144(5): 2056-2061, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35100506

RESUMO

Herein we report the first chiral Au10 nanoclusters stabilized by chiral bis N-heterocyclic carbene (bisNHC) ligands. ESI-MS and single-crystal X-ray crystallography confirmed the molecular formula to be [Au10(bisNHC)4Br2](O2CCF3)2. The chiral Au10 nanocluster adopts a linear edge-shared tetrahedral geometry with a prolate shape. DFT calculations provide insight into the electronic structure, optical absorption, and circular dichroism (CD) characteristics of this unique Au10 nanocluster. CD spectra demonstrate chirality transfer from the chiral bisNHC ligand to the inner Au10 nanocluster core. Examination of ESI-MS and UV-vis spectra show that cluster [Au9(bisNHC)4Br]Br2 is formed initially and then transformed into the Au10 nanocluster in solution.

9.
J Am Chem Soc ; 144(24): 10844-10853, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35671335

RESUMO

The complexity of heterogeneous metal catalysts makes it challenging to gain insights into their catalytic mechanisms. Thus, there exists a huge gap between heterogeneous catalysis and organometallic catalysis. With the success in the preparation of highly robust atomically precise metal nanocluster catalysts (i.e., [Au16(NHC-1)5(PA)3Br2]3+ and [Au17(NHC-1)4(PA)4Br4]+, where NHC-1 is a bidentate NHC ligand, and PA is phenylacetylide) with surface organometallic motifs anchored on the metallic core, we demonstrate in this work how the metallic core works synergistically with the surface organometallic motifs to enhance the catalysis. More importantly, the discovery allows the development of highly stable and recyclable heterogeneous metal catalysts to achieve efficient hydroamination of alkynes with an extremely low catalyst dosage (0.002 mol %), helping bridge the gap between heterogeneous and homogeneous metal catalysis. The surface modification of metal nanocatalysts with organometallic motifs provides a new design principle of metal catalysts with enhanced catalysis.

10.
J Am Chem Soc ; 144(20): 9000-9006, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35549258

RESUMO

Atomically precise hydrido gold nanoclusters are extremely rare but interesting due to their potential applications in catalysis. By optimization of molecular precursors, we have prepared an unprecedented N-heterocyclic carbene-stabilized hydrido gold nanocluster, [Au24(NHC)14Cl2H3]3+. This cluster comprises a dimer of two Au12 kernels, each adopting an icosahedral shape with one missing vertex. The two kernels are joined through triangular faces, which are capped with a total of three hydrides. The hydrides are detected by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy, with density functional theory calculations supporting their position bridging the six uncoordinated gold sites. The reactivity of this Au24H3 cluster in the electrocatalytic reduction of CO2 is demonstrated and benchmarked against related catalysts.

11.
J Am Chem Soc ; 143(3): 1273-1277, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33444006

RESUMO

High-resolution electrospray ionization ion mobility mass spectrometry has revealed a gas-phase isomer of the ubiquitous, extremely well-studied Au25(SR)18 cluster both in anionic and cationic form. The relative abundance of the isomeric structures can be controlled by in-source activation. The measured collision cross section of the new isomer agrees extremely well with a recent theoretical prediction (Matus, M. F.; et al. Chem. Commun. 2020, 56, 8087) corresponding to a Au25(SR)18- isomer that is energetically close and topologically connected to the known ground-state structure via a simple rotation of the gold core without breaking any Au-S bonds. The results imply that the structural dynamics leading to isomerization of thiolate-protected gold clusters may play an important role in their gas-phase reactions and that isomerization could be controlled by external stimuli.

12.
J Am Chem Soc ; 143(31): 12100-12107, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34314590

RESUMO

Heteroatom-doped metal nanoclusters (NCs) are highly desirable to gain fundamental insights into the effect of doping on the electronic structure and catalytic properties. Unfortunately, their controlled synthesis is highly challenging when the metal atomic sizes are largely different (e.g., Cu and Pt). Here, we design a metal-exchange strategy that enables simultaneous doping and resizing of NCs. Specifically, [Pt2Cu34(PET)22Cl4]2- NC, the first example of a Pt-doped Cu NC, is synthesized by utilizing the unique reactivity of [Cu32(PET)24Cl2H8]2- NC with Pt4+ ions. The single-crystal X-ray structure reveals that two directly bonded Pt atoms occupy the two centers of an unusually interpenetrating, incomplete biicosahedron core (Pt2Cu18), which is stabilized by a Cu16(PET)22Cl4 shell. The molecular structure and composition of the NC are validated by combined experimental and theoretical results. Electronic structure calculations, using the density functional theory, show that the Pt2Cu34 NC is a 10-electron superatom. The computed absorption spectrum matches well with the measured data and allows for assignment of the absorption peaks. The calculations also rationalize energetics for ligand exchange observed in the mass spectrometry data. The synergistic effects induced by Pt doping are found to enhance the catalytic activity of Cu NCs by ∼300-fold in silane to silanol conversion under mild conditions. Furthermore, our synthetic strategy has potential to produce Ni-, Pd-, and Au-doped Cu NCs, which will open new avenues to uncover their molecular structures and catalytic properties.

13.
Small ; 17(27): e2005499, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33533179

RESUMO

Potential biomedical applications of gold nanoparticles have increasingly been reported with great promise for diagnosis and therapy of several diseases. However, for such a versatile nanomaterial, the advantages and potential health risks need to be addressed carefully, as the available information about their toxicity is limited and inconsistent. Atomically precise gold nanoclusters (AuNCs) have emerged to overcome this challenge due to their unique features, such as superior stability, excellent biocompatibility, and efficient renal clearance. Remarkably, the elucidation of their structural and physicochemical properties provided by theory-experiment investigations offers exciting opportunities for site-specific biofunctionalization of the nanoparticle surface, which remains a significant concern for most of the materials in the biomedical field. This concept highlights the advantages conferred by atomically precise AuNCs for biomedical applications and the powerful strategy combining computational and experimental studies towards finding an optimal biocompatible AuNCs-based nanosystem.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro
14.
Inorg Chem ; 60(6): 3529-3533, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33615777

RESUMO

Reported herein are the synthesis and structures of two high-nuclearity AuAg nanoclusters, namely, [Au78Ag66(C≡CPh)48Cl8]q- and [Au74Ag60(C≡CPh)40Br12]2-. Both clusters possess a three-concentric-shell Au12@Au42@Ag60 structure. However, the dispositions of the metal atoms, and the ligand coordination modes, of the outermost shells of these clusters are distinctly different. These structural differences reflect the bonding characteristics of the halide ligands. As revealed by density functional theory analysis, these clusters exhibit superatomic electron shell closings at magic numbers of 92 (for q = 4) and 84, respectively, consistent with their spherical shapes. Both clusters exhibit unusual multivalent redox properties.

15.
J Chem Phys ; 154(20): 204303, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241155

RESUMO

The magnetic response of valence electrons in doped gold-based M@Au8L8 q superatoms (M = Pd, Pt, Ag, Au, Cd, Hg, Ir, and Rh; L = PPh3; and q = 0, +1, +2) is studied by calculating the gauge including magnetically induced currents (GIMIC) in the framework of the auxiliary density functional theory. The studied systems include 24 different combinations of the dopant, total cluster charge, and cluster structure (cubic-like or oblate). The magnetically induced currents (both diatropic and paratropic) are shown to be sensitive to the atomic structure of clusters, the number of superatomic electrons, and the chemical nature of the dopant metal. Among the cubic-like structures, the strongest aromaticity is observed in Pd- and Pt-doped M@Au8L8 0 clusters. Interestingly, Pd- and Pt-doping increases the aromaticity as compared to a similar all-gold eight-electron system Au9L8 +1. With the recent implementation of the GIMIC in the deMon2k code, we investigated the aromaticity in the cubic and butterfly-like M@Au8 core structures, doped with a single M atom from periods 5 and 6 of groups IX-XII. Surprisingly, the doping with Pd and Pt in the cubic structure increases the aromaticity compared to the pure Au case not only near the central atom but encompassing the whole metallic core, following the aromatic trend Pd > Pt > Au. These doped (Pd, Pt)@Au8 nanoclusters show a closed shell 1S21P6 superatom electronic structure corresponding to the cubic aromaticity rule 6n + 2.

16.
Angew Chem Int Ed Engl ; 60(23): 12897-12903, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33719174

RESUMO

Surface ligands play critical roles in determining the surface properties of metal clusters. However, modulating the properties and controlling the surface structure of clusters through surface-capping-agent displacement is challenging. Herein, [Ag14 (SPh(CF3 )2 )12 (PPh3 )4 (DMF)4 ] (Ag14 -DMF; DMF=N,N-dimethylformamide), with weakly coordinated DMF ligands on surface silver sites, was synthesized by a mixed-ligands strategy. Owing to the high surface reactivity of Ag14 -DMF, the surface ligands are labile, easily dissociated or exchanged by other ligands. Based on the enhanced surface reactivity, easy modulation of the optical properties of Ag14 by reversible "on-off" DMF ligation was realized. When chiral amines were introduced to as-prepared products, all eight surface ligands were replaced by amines and the racemic Ag14 clusters were converted to optically pure homochiral Ag14 clusters as evidenced by circular dichroism (CD) activity and single-crystal X-ray diffraction (SCXRD). This work provides a new insight into modulation of the optical properties of metal clusters and atomically precise homochiral clusters for specific applications are obtained.

17.
Angew Chem Int Ed Engl ; 60(2): 970-975, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-32996286

RESUMO

A new alkynylated cluster [Au13 Ag16 (C10 H6 NO)24 ]3- is prepared by a NaBH4 mediated reduction method. The AuAg clusters are confirmed by sophisticated characterization techniques. It has a unique "Aucenter @Ag12 @Au12 Ag4 " metal framework which is protected by 24 atypical alkyne ligands L (L=C10 H6 NO). The ligands construct a unique type of motif L-(Ag)-Au-(Ag)-L at the cluster interface, where the alkyne (C≡C) group of each L was linked by sharing an Au atom through the σ bonds and each C≡C group was discretely connected to a chemically different Ag atom (Agicosahedral /Agcap ) through π bonds. The electronic and optical properties of [Au13 Ag16 L24 ]3- were studied. DFT characterized the cluster as a clear 8-electron superatom, and peaks in the optical absorption spectrum were interpreted in terms of the P and D superatom states. The supported Au13 Ag16 L24 /CeO2 catalyst exhibited high catalytic activity and selectivity towards the A3 -coupling reaction involving benzaldehyde, diethylamine, and phenylacetylene.

18.
Angew Chem Int Ed Engl ; 60(16): 9038-9044, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33372362

RESUMO

Although atomically precise metalloid nanoclusters (NCs) of identical size with distinctly different molecular structures are highly desirable to understand the structural effects on the optical and photophysical properties, their synthesis remains highly challenging. Herein, we employed phosphine and thiol capping ligands featuring appropriate steric effects and synthesized a charge-neutral Ag NC with the formula Ag44 (EBT)26 (TPP)4 (EBT: 2-ethylbenzenethiolate; TPP: triphenylphosphine). The single-crystal X-ray structure reveals that this NC has a hollow metal core of Ag12 @Ag20 and a metal-ligand shell of Ag12 (EBT)26 (TPP)4 . The presence of mixed ligands and long V-shaped metal-ligand motifs on this NC has resulted in an enhancement of the NIR-II photoluminescence quantum yield by >25-fold compared to an all-thiolate-stabilized anionic [Ag44 (SR)30 ]4- NC (SR: thiolate). Time-dependent density-functional calculations show that our Ag44 NC is an 18-electron superatom with a modulated electronic structure as compared to the [Ag44 (SR)30 ]4- anion, significantly influencing its optical properties.

19.
Angew Chem Int Ed Engl ; 60(41): 22411-22416, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34347339

RESUMO

We report the synthesis and structure of tertiary chiral nanostructures with 100 % optical purity. A novel synthetic strategy, using chiral reducing agent, R and S-BINAPCuBH4 (BINAP is 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl), is developed to access to atomically precise, intrinsically chiral [Au7 Ag6 Cu2 (R- or S-BINAP)3 (SCH2 Ph)6 ]SbF6 nanoclusters in one-pot synthesis. The clusters represent the first tri-metallic superatoms with inherent chirality and fair stability. Both metal distribution (primary) and ligand arrangement (secondary) of the enantiomers exhibited perfect mirror images, and unprecedentedly, the self-assembly driven by the C-H⋅⋅⋅F interaction between the phenyl groups of the superatom moieties and SbF6 - anions induced the formation of bio-mimic left- and right-handed helices, achieving the tertiary chiral nanostructures. DFT calculations revealed the connections between the molecular details and chiral optical activity.

20.
Angew Chem Int Ed Engl ; 60(7): 3752-3758, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33104265

RESUMO

Deciphering the molecular pictures of the multi-component and non-periodic organic-inorganic interlayer is a grand technical challenge. Here we show that the atomic arrangement of hybrid surface ligands on metal nanoparticles can be precisely quantified through comprehensive characterization of a novel gold cluster, Au44 (i Pr2 -bimy)9 (PA)6 Br8 (1), which features three types of ligands, namely, carbene (1,3-diisopropylbenzimidazolin-2-ylidene, i Pr2 -bimy), alkynyl (phenylacetylide, PA), and halide (Br), respectively. The delicately balanced stereochemical effects and bonding capabilities of the three ligands give rise to peculiar geometrical and electronic structures. Remarkably, despite its complex and highly distorted surface structure, cluster 1 exhibits unusual catalytic properties and yet it is highly stable, both chemically and thermally. Moreover, rich reactive sites on the cluster surface raise the prospect of bio-compatibility (as it can be functionalized to yield water-soluble derivatives) and bio-applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA