RESUMO
PURPOSE: Physique athletes engage in rigorous competition preparation involving intense energy restriction and physical training to enhance muscle definition. This study investigates hormonal changes and their physiological and performance impacts during such preparation. METHODS: Participants included female (10 competing (COMP) and 10 non-dieting controls (CTRL)) and male (13 COMP and 10 CTRL) physique athletes. COMP participants were tested 23 weeks before (PRE), one week before (MID), and 23 weeks after the competition (POST). Non-dieting CTRL participants were tested at similar intervals. Measurements included body composition (DXA), muscle cross-sectional area (ultrasound), energy availability (EA) derived by subtracting exercise energy expenditure (EEE) from energy intake (EI) and dividing by fat-free mass (FFM), muscle strength, and various serum hormone concentrations (ACTH, cortisol, estradiol, FSH, IGF-1, IGFBP-3, insulin, and free and total testosterone and SHBG). RESULTS: During the diet, EA (p < 0.001), IGF-1 (p < 0.001), IGFBP-3 (p < 0.01), and absolute muscle strength (p < 0.01-0.001) decreased significantly in both sexes in COMP. Decreases in IGF-1 were also associated with higher loss in FFM. In males, testosterone (p < 0.01) and free testosterone (p < 0.05) decreased, while SHBG (p < 0.001) and cortisol (p < 0.05) increased. Insulin decreased significantly only in males (p < 0.001). Mood disturbances, particularly increased fatigue in males (p < 0.05), highlighted the psychological strain of competition preparation. All these changes were restored by increased EA during the post-competition recovery period. CONCLUSION: Significant reductions in IGF-1 and IGFBP-3 during competition preparation may serve as biomarkers for monitoring physiological stress. This study offers valuable insights into hormonal changes, muscle strength, and mood state during energy-restricted intense training.
RESUMO
ABSTRACT: Kotikangas, J, Walker, S, Peltonen, H, and Häkkinen, K. Time course of neuromuscular fatigue during different resistance exercise loadings in power athletes, strength athletes, and nonathletes. J Strength Cond Res 38(7): 1231-1242, 2024-Training background may affect the progression of fatigue and neuromuscular strategies to compensate for fatigue during resistance exercises. Thus, our aim was to examine how training background affects the time course of neuromuscular fatigue in response to different resistance exercises. Power athletes (PA, n = 8), strength athletes (SA, n = 8), and nonathletes (NA, n = 7) performed hypertrophic loading (HL, 5 × 10 × 10RM), maximal strength loadings (MSL, 7 × 3 × 3RM) and power loadings (PL, 7 × 6 × 50% of 1 repetition maximum) in back squat. Average power (AP), average velocity (VEL), surface electromyography (sEMG) amplitude (sEMGRMS), and sEMG mean power frequency (sEMGMPF) were measured within all loading sets. During PL, greater decreases in AP occurred from the beginning of SET1 to SET7 and in VEL to both SET4 and SET7 in NA compared with SA (p < 0.01, g > 1.84). During HL, there were various significant group × repetition interactions in AP within and between sets (p < 0.05, ηp2 > 0.307), but post hoc tests did not indicate significant differences between the groups (p > 0.05, g = 0.01-0.93). During MSL and HL, significant within-set and between-set decreases occurred in AP (p < 0.001, ηp2 > 0.701) and VEL (p < 0.001, ηp2 > 0.748) concurrently with increases in sEMGRMS (p < 0.01, ηp2 > 0.323) and decreases in sEMGMPF (p < 0.01, ηp2 > 0.242) in all groups. In conclusion, SA showed fatigue resistance by maintaining higher AP and VEL throughout PL. During HL, PA tended to have the greatest initial fatigue response in AP, but between-group comparisons were nonsignificant despite large effect sizes (g > 0.8). The differences in the progression of neuromuscular fatigue may be related to differing neural activation strategies between the groups, but further research confirmation is required.
Assuntos
Atletas , Eletromiografia , Fadiga Muscular , Força Muscular , Treinamento Resistido , Humanos , Fadiga Muscular/fisiologia , Treinamento Resistido/métodos , Masculino , Adulto Jovem , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Fatores de TempoRESUMO
ABSTRACT: Comstock, BA, Flanagan, SD, Denegar, CR, Newton, RU, Häkkinen, K, Volek, JS, Maresh, CM, Kraemer, WJ. Structural and functional properties of lower extremity tendons in men. J Strength Cond Res XX(X): 000-000, 2024-The purpose of this study was to understand further patellar and Achilles tendon structure and function, body composition, and serum collagen turnover biomarkers in young men who performed heavy resistance training (RT, n = 13, age: 22.2 ± 1.4 years) compared with recreationally active men who were not resistance-trained (NR, n = 13, age: 22.8 ± 2.2 years). Tendon properties were measured at rest and during maximal voluntary isometric efforts using ultrasonography and dynamometry. Lean body mass (LBM) and bone mineral density (BMD) were assessed with dual X-ray absorptiometry. Serum collagen turnover markers were analyzed and related to tendon measures. Resistance-trained men had significantly (p ≤ 0.05) greater LBM and BMD compared with recreationally active men. Resistance-trained men also showed significantly greater patellar tendon (PT) stiffness (45%) and Young's modulus (36%), though the PT cross-sectional area (CSA) did not differ significantly between groups. Achilles tendon CSA was significantly larger in resistance-trained men. Still, other properties such as stiffness and modulus did not differ significantly between the groups. Serum collagen turnover markers showed no significant differences between groups and were not correlated to any tendon or bone biomarkers. The findings support that resistance-trained men have greater LBM and BMD. However now, it reveals that tendon adaptations differ, as not all measures were similarly affected in both tendons. The blood biomarkers did not show any obvious roles in explaining the differential changes in tendons. Heavy RT induces differential tendon changes potentially due to complex interactions of training variables.
RESUMO
This study investigated whether a strength training session-induced acute fatigue is related to individuals' strength training adaptations in maximal force and/or muscle hypertrophy, and whether acute responses in serum testosterone (T) and growth hormone (GH) concentrations during the training sessions would be associated with individual neuromuscular adaptations. 26 males completed the 10-week strength-training intervention, which included fatiguing dynamic leg press acute loading bouts (5 x 10 RM) at weeks two, four, six, and ten. Blood samples were collected before and after the loading and after 24h of recovery for serum T, GH, and cortisol (C) concentrations at weeks 2, 6, and 10. The cross-sectional area of the vastus lateralis was measured by ultrasonography. Isometric force measurements were performed before and immediately after loadings, and loading-induced acute decrease in maximal force was reported as the fatigue percentage. The subjects were split into three groups according to the degree of training-induced muscle hypertrophy after the training period. Increases in isometric force were significant for High Responders (HR, n = 10) (by 24.3 % ± 17.2, p = 0.035) and Medium Responders (MR, n = 7) (by 23.8 % ± 5.5, p = 0.002), whereas the increase of 26.2 % (±16.5) in Low Responders (LR, n = 7) was not significant. The amount of work (cm + s) increased significantly at every measurement point in all the groups. A significant correlation was observed between the fatigue percentage and relative changes in isometric force after the training period for the whole group (R = 0.475, p = 0.022) and separately only in HR (R = 0.643, p = 0.049). Only the HR group showed increased acute serum GH concentrations at every measurement point. There was also a significant acute increase in serum T for HR at weeks 6 and 10. HR showed the strongest correlation between acute loading-induced fatigue and isometric force gains. HR was also more sensitive to acute increases in serum concentrations of T and GH after the loading. Acute fatigue and serum GH concentrations may be indicators of responsiveness to muscle strength gain and, to some extent, muscle hypertrophy.
Assuntos
Hormônio do Crescimento Humano , Treinamento Resistido , Masculino , Humanos , Hidrocortisona , Fadiga , HipertrofiaRESUMO
Prolonged periods of energy deficit leading to weight loss induce metabolic adaptations resulting in reduced energy expenditure, but the mechanisms for energy conservation are incompletely understood. We examined 42 healthy athletic females (age 27.5 ± 4.0 years, body mass index 23.4 ± 1.7 kg/m2 ) who volunteered into either a group dieting for physique competition (n = 25) or a control group (n = 17). The diet group substantially reduced their energy intake and moderately increased exercise levels to induce loss of fat mass that was regained during a voluntary weight regain period. The control group maintained their typical lifestyle habits and body mass as instructed. From the diet group, fasting blood samples were drawn at baseline (PRE), after 4- to 5-month weight loss (PRE-MID), and after 4- to 5-month weight regain (MID-POST) as well as from the control group at similar intervals. Blood was analyzed to determine leukocyte transcriptome by RNA-Sequencing and serum metabolome by nuclear magnetic resonance (NMR) platform. The intensive weight loss period induced several metabolic adaptations, including a prominent suppression of transcriptomic signature for mitochondrial OXPHOS and ribosome biogenesis. The upstream regulator analysis suggested that this reprogramming of cellular energy metabolism may be mediated via AMPK/PGC1-α signaling and mTOR/eIF2 signaling-dependent pathways. Our findings show for the first time that prolonged energy deprivation induced modulation of mitochondrial metabolism can be observed through minimally invasive measures of leukocyte transcriptome and serum metabolome at systemic level, suggesting that adaptation to energy deficit is broader in humans than previously thought.
Assuntos
Leucócitos/metabolismo , Mitocôndrias/metabolismo , Transcriptoma/fisiologia , Aumento de Peso/fisiologia , Redução de Peso/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Ingestão de Energia/fisiologia , Exercício Físico/fisiologia , Feminino , Humanos , Adulto JovemRESUMO
NEW FINDINGS: What is the central question of this study? Do males and females differ in fatiguability during dynamic loadings, and what are the acute neuromuscular and hormonal responses to 20 versus 40% velocity-loss resistance loadings? How does an 8-week velocity-loss resistance training period modify acute neuromuscular and hormonal responses in males and females? What is the main finding and its importance? Using resistance training methods that regulated the within-set fatigue limit, males appeared to be more susceptible to fatigue than females before the training period. This between-sex difference was diminished after training. The predominant mechanisms of fatigue from 20 and 40% velocity-based resistance training appear to be within the musculature. ABSTRACT: Scientific examination of velocity-based resistance training (VBRT) has increased recently, but how males and females respond to different VBRT protocols or how these acute responses are modified after a period of training is unknown. Habitually resistance-trained males and females followed either a 20 or 40% velocity-loss programme for 8 weeks. Acute squat loading tests (five sets, 70% one-repetition maximum load, 3 min rest) were performed before and after the training period. Tests of maximum neuromuscular performance and blood sampling were conducted before, within 10 min of completion (POST) and 24 h after each acute loading test. Testing included countermovement jump, resting femoral nerve electrical stimulation and bilateral isometric leg press. Blood samples were analysed for whole-blood lactate, serum testosterone, cortisol, growth hormone and creatine kinase concentrations. Countermovement jump height, maximum isometric bilateral leg-press force and the force from a 10 Hz doublet decreased in all groups at POST after 20 and 40% velocity loss. Only males showed reduced force from the 100 Hz doublet and voluntary force over 100 ms at POST before training. The 40% velocity loss led to increased blood lactate and growth hormone responses before training in both males and females. After training, more systematic and equivalent responses in force over 100 ms, force from a 100 Hz doublet and blood lactate were observed regardless of sex/VBRT protocol. Overall, acute responses were greater from 40% VBRT, and males were more susceptible to acute loss in force production capacity before the training period. These VBRT protocol- and sex-related differences were diminished after training.
Assuntos
Treinamento Resistido , Fadiga , Feminino , Hormônio do Crescimento , Humanos , Contração Isométrica/fisiologia , Ácido Láctico , Masculino , Força Muscular , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , TestosteronaRESUMO
ABSTRACT: Seppänen, S and Häkkinen, K. Step vs. two-phase gradual volume reduction tapering protocols in strength training: Effects on neuromuscular performance and serum hormone concentrations. J Strength Cond Res 36(10): 2771-2779, 2022-This study assessed effects of 2 reduced volume tapering protocols on neuromuscular performance and serum hormone concentrations in 14 recreationally strength-trained men (21-30 years). After an 8-week strength training period subjects were divided to the step (54% volume reduction immediately) and 2-phase gradual (38% reduction for the first week and 70% for the second week) tapering groups for 2 weeks. One repetition maximum (1RM) squat, maximal isometric bilateral leg press force (leg press MVIC), electromyography (EMG) of vastus lateralis (VL) and vastus medialis, cross-sectional area of VL, serum testosterone, cortisol, and sex hormone-binding globuline (SHBG) concentrations were measured before and repeatedly during training and tapering periods. Both tapering protocols led to significant increases ( p < 0.01) in squat 1RM. However, the increase in the step group (3.4 ± 2.1%) was higher ( p < 0.05) than in the gradual group (1.7 ± 0.9%). The maximal integrated EMG of VL increased ( p < 0.05) during tapering in the step group. Serum testosterone concentration increased ( p < 0.05) and T/SHBG ratio reached the highest level after 1-week tapering in the step group. In the gradual group, T/SHBG ratio was ( p < 0.05) higher after the taper than after the training period. Individual changes in T/SHBG ratio in the total group correlated positively ( p < 0.05) with individual changes in leg press MVIC during the taper. These results suggest that reducing training volume can be an effective way to peak maximal strength. However, a higher volume reduction rate at the beginning of taper seems to lead to more favorable changes in maximal strength accompanied by positive changes in the neuromuscular system and serum hormone concentrations when taper follows an overreaching period.
Assuntos
Treinamento Resistido , Humanos , Hidrocortisona , Masculino , Força Muscular , Músculo Esquelético , Treinamento Resistido/métodos , Testosterona , Levantamento de PesoRESUMO
ABSTRACT: Pihlainen, K, Kyröläinen, H, Santtila, M, Ojanen, T, Raitanen, J, and Häkkinen, K. Effects of combined strength and endurance training on body composition, physical fitness, and serum hormones during a 6-month crisis management operation. J Strength Cond Res 36(9): 2361-2370, 2022-Very few studies have examined the impact of training interventions on soldier readiness during an international military operation. Therefore, the present study investigated the effects of combined strength and endurance training on body composition, physical performance, and hormonal status during a 6-month international military deployment consisting of typical peacekeeping tasks, e.g., patrolling, observation, and on-base duties. Soldiers ( n = 78) were randomly allocated to a control group (C) or one of 3 combined whole-body strength and endurance training groups with varying strength-to-endurance training emphasis (Es = 25/75%, SE = 50/50% or Se = 75/25% of strength/endurance training). Body composition, physical performance (3000-m run, standing long jump [SLJ], isometric maximal voluntary contraction of the lower [MVC lower] and upper extremities [MVC upper ], muscle endurance tests), and selected serum hormone concentrations were determined prior to training (PRE), and after 9 (MID) and 19 (POST) weeks of training. Within- and between-group changes were analyzed using linear regression models. The average combined strength and endurance training frequency of the total subject group was 3 ± 2 training sessions per week. No changes were observed in physical performance variables in the intervention groups, whereas SLJ decreased by 1.9% in C ( p < 0.05). Maximal voluntary contraction lower increased by 12.8% in the combined intervention group ( p < 0.05), and this was significantly different to C ( p < 0.05). Testosterone-to-cortisol ratio increased in SE and Se ( p < 0.05), whereas no change was observed in C. The intervention groups maintained or improved their physical performance during deployment, which is beneficial for operational readiness. However, the high interindividual variation observed in training adaptations highlights the importance of training individualization during prolonged military operations.
Assuntos
Composição Corporal , Treino Aeróbico , Hormônios , Aptidão Física , Treinamento Resistido , Composição Corporal/fisiologia , Treino Aeróbico/métodos , Hormônios/sangue , Humanos , Destacamento Militar , Militares , Aptidão Física/fisiologia , Treinamento Resistido/métodosRESUMO
ABSTRACT: Kraemer, WJ, Caldwell, LK, Post, EM, Beeler, MK, Emerson, A, Volek, JS, Maresh, CM, Fogt, JS, Fogt, N, Häkkinen, K, Newton, RU, Lopez, P, Sanchez, BN, and Onate, JA. Arousal/stress effects of "Overwatch" eSports game competition in collegiate gamers. J Strength Cond Res 36(10): 2671-2675, 2022-To date, no physical response data are available for one of the most popular eSport games, Overwatch . The purpose of this investigation was to describe the stress signaling associated with competitive Overwatch play and to understand how acute hormonal responses may affect performance. Thirty-two male college-aged gamers (age: 21.3 ± 2.7 years; estimated time played per week: 18 ± 15 hours) completed the study. Subjects were randomly assigned to a 6-player team to compete in a tournament-style match. Salivary measures of cortisol and testosterone were collected immediately before (PRE) and after (POST) the first-round game, with the heart rate recorded continuously during the match. The mean characteristics were calculated for each variable and comparisons made by the skill level. Significance was defined as p ≤ 0.05. There were no differences in measures of salivary cortisol. A differential response pattern was observed by the skill level for testosterone. The low skill group displayed a significant increase in testosterone with game play (mean ± SD , testosterone PRE: 418.3 ± 89.5 pmol·L -1 , POST: 527.6 ± 132.4 pmol·L -1 , p < 0.001), whereas no change was observed in the high skill group. There were no differences in heart rate characteristics between skill groups. Overall, the average heart rate was 107.2 ± 17.8 bpm with an average max heart rate of 133.3 ± 19.1 bpm. This study provides unique physiological evidence that a sedentary Overwatch match modulates endocrine and cardiovascular responses, with the skill level emerging as a potential modulator.
Assuntos
Hidrocortisona , Testosterona , Adolescente , Adulto , Nível de Alerta , Humanos , Masculino , Universidades , Adulto JovemRESUMO
Effects of eccentric (ECC) versus concentric (CON) strength training of the upper body performed twice a week for 10 weeks followed by detraining for five weeks on maximal force, muscle activation, muscle mass and serum hormone concentrations were investigated in young women (n = 11 and n = 12). One-repetition bench press (1RM), maximal isometric force and surface electromyography (EMG) of triceps brachii (TB), anterior deltoid (AD) and pectoralis major (PM), cross-sectional area (CSA) of TB (Long (LoH) and Lateral Head (LaH)) and thickness of PM, as well as serum concentrations of free testosterone, cortisol, follicle-stimulating hormone, estradiol and sex hormone-binding globulin were measured. ECC and CON training led to increases of 17.2 ± 11.3% (p < 0.001) and 13.1 ± 5.7% (p < 0.001) in 1RM followed by decreases of -6.6 ± 3.6% (p < 0.01) and -8.0 ± 4.5% (p < 0.001) during detraining, respectively. Isometric force increased in ECC by 11.4 ± 9.6 % (p < 0.05) from week 5 to 10, while the change in CON by 3.9±6.8% was not significant and a between group difference was noted (p < 0.05). Maximal total integrated EMG of trained muscles increased only in the whole subject group (p < 0.05). CSA of TB (LoH) increased in ECC by 8.7 ± 8.0% (p < 0.001) and in CON by 3.4 ± 1.6% (p < 0.01) and differed between groups (p < 0.05), and CSA of TB (LaH) in ECC by 15.7 ± 8.0% (p < 0.001) and CON by 9.7 ± 6.6% (p < 0.001). PM thickness increased in ECC by 17.7 ± 10.9% (p < 0.001) and CON by 14.0 ± 5.9% (p < 0.001). Total muscle sum value (LoH + LaH + PM) increased in ECC by 12.4 ± 6.9% (p < 0.001) and in CON by 7.1 ± 2.9% (p < 0.001) differing between groups (p < 0.05) and decreased during detraining in ECC by -6.5 ± 4.3% (p < 0.001) and CON by -6.1 ± 2.8% (p < 0.001). The post detraining combined sum value of CSA and thickness was in ECC higher (p < 0.05) than at pre training. No changes were detected in serum hormone concentrations, but baseline free testosterone levels in the ECC and CON group combined correlated with changes in 1RM (r = 0.520, p < 0.016) during training. Large neuromuscular adaptations of the upper body occurred in women during ECC, and CON training in 10 weeks. Isometric force increased only in response to ECC, and total muscle sum value increased more during ECC than CON training. However, no changes occurred in serum hormones, but individual serum-free testosterone baseline concentrations correlated with changes in 1RM during strength training in the entire group. Both groups showed significant decreases in neuromuscular performance and muscle mass during detraining, while post detraining muscle sum value was only in ECC significantly higher than at pre training.
Assuntos
Treinamento Resistido , Eletromiografia , Feminino , Humanos , Hipertrofia , Músculo Esquelético/fisiologia , TestosteronaRESUMO
This study focused on investigating differences in shooting performance and performance-related factors between two different aiming strategies (HOLD, low radial velocity during the approach 0.4-0.2 seconds before triggering, and TIMING, high radial velocity) in biathlon standing shooting. A total of 23 biathletes fired 8 × 5 standing shots at rest (REST) and 2 × 5 shots during a race simulation (RACE). Shooting performance (hit point distance from the center of the target), aiming point trajectory and postural balance were measured from each shot. Shooting performance was similar both at REST (HOLD 33 ± 5 mm vs TIMING 38 ± 8 mm, P = .111) and in RACE (40 ± 11 mm vs 47 ± 12 mm, P = .194). Better shooting performance was related to smaller distance of the aiming point mean location (REST r = 0.93, P < .001, RACE r = 0.72, P = .018) and higher time spent within â of the distance of the hit area edge from the center 0.6-0.0 seconds before triggering (REST r=-0.88, P = .001, RACE r=-0.73, P = .016) in HOLD, and to lower aiming point total velocity 0.6-0.0 seconds before triggering (REST r = 0.77, P = .009, RACE r = 0.88, P = .001) and less aiming point movement 0.2-0.0 seconds before triggering (REST r = 0.82, P = .003, RACE r = 0.72, P = .012) in TIMING. Postural balance was related to shooting performance at REST in both groups and in RACE in TIMING. Biathletes using the hold strategy should focus on stabilizing the aiming point before triggering and aiming at the center, whereas biathletes using the timing strategy benefit of decreasing the total velocity during the final approach as well as minimizing the aiming point movement right before triggering.
Assuntos
Desempenho Atlético/fisiologia , Destreza Motora/fisiologia , Equilíbrio Postural , Esportes/fisiologia , Posição Ortostática , Adolescente , Adulto , Feminino , Armas de Fogo , Humanos , Masculino , Esqui/fisiologia , Análise e Desempenho de Tarefas , Fatores de Tempo , Adulto JovemRESUMO
This study investigated acute responses and post 24-h recovery to four running sessions performed at different intensity zones by supine heart rate variability, countermovement jump, and a submaximal running test. A total of 24 recreationally endurance-trained male subjects performed 90 min low-intensity (LIT), 30 min moderate-intensity (MOD), 6×3 min high-intensity interval (HIIT) and 10×30 s supramaximal-intensity interval (SMIT) exercises on a treadmill. Heart rate variability decreased acutely after all sessions, and the decrease was greater after MOD compared to LIT and SMIT (p<0.001; p<0.01) and HIIT compared to LIT (p<0.01). Countermovement jump decreased only after LIT (p<0.01) and SMIT (p<0.001), and the relative changes were different compared to MOD (p<0.01) and HIIT (p<0.001). Countermovement jump remained decreased at 24 h after SMIT (p<0.05). Heart rate during the submaximal running test rebounded below the baseline 24 h after all sessions (p<0.05), while the rating of perceived exertion during the running test remained elevated after HIIT (p<0.05) and SMIT (p<0.01). The current results highlight differences in the physiological demands of the running sessions, and distinct recovery patterns of the measured aspects of performance. Based on these results, assessments of performance and recovery from multiple perspectives may provide valuable information for endurance athletes, and help to improve the quality of training monitoring.
Assuntos
Frequência Cardíaca/fisiologia , Movimento/fisiologia , Corrida/fisiologia , Adulto , Atletas , Sistema Nervoso Autônomo/fisiologia , Teste de Esforço/métodos , Humanos , Ácido Láctico/sangue , Masculino , Fibras Parassimpáticas Pós-Ganglionares/fisiologia , Resistência Física/fisiologia , Esforço Físico/fisiologia , Distribuição Aleatória , Recuperação de Função Fisiológica , Fatores de Tempo , Adulto JovemRESUMO
ABSTRACT: Räntilä, A, Ahtiainen, JP, Avela, J, Restuccia, J, Kidgell, DJ, and Häkkinen, K. High responders to hypertrophic strength training also tend to lose more muscle mass and strength during detraining than low responders. J Strength Cond Res 35(6): 1500-1511, 2021-This study investigated differences in individual responses to muscle hypertrophy during strength training and detraining. Ten weeks of resistance training was followed by 6 weeks of detraining in men (n = 24). Bilateral leg press (LP) one-repetition maximum (1RM) and maximal electromyography (EMGs) of vastus lateralis (VL) and vastus medialis, maximal voluntary activation (VA), transcranial magnetic stimulation for corticospinal excitability (CE), cross-sectional area of VL (VLCSA), selected serum hormone concentrations were measured before and repeatedly during training and detraining. In the total group, VLCSA increased by 10.7% (p = 0.025) and LP 1RM by 16.3% (p < 0.0001) after training. The subjects were split into 3 groups according to increases in VLCSA: high responders (HR) > 15% (n = 10), medium responders (MR) 15-4.5% (n = 7), and low responders (LR) < 4.5% (n = 7). Vastus lateralis CSA in HR and MR increased statistically significantly from pre to posttraining but not in LR. Only HR increased LP 1RM statistically significantly from pre to post. Maximal EMG activity increased 21.3 ± 22.9% from pre- to posttraining for the total group (p = 0.009) and for MR (p < 0.001). No significant changes occurred in VA and CE or serum hormone concentrations. During detraining, HR showed a decrease of -10.5% in VLCSA, whereas MR and LR did not. None of the subgroups decreased maximal strength during the first 3 weeks of detraining, whereas HR showed a slight (by 2.5%) rebound in strength. The present results suggest that strength gains and muscle activation adaptations may take place faster in HR and decrease also faster compared with other subgroups during detraining.
Assuntos
Treinamento Resistido , Eletromiografia , Humanos , Hipertrofia , Masculino , Força Muscular , Músculo Esquelético , Levantamento de PesoRESUMO
ABSTRACT: Myllyaho, MM, Ihalainen, JK, Hackney, AC, Valtonen, M, Nummela, A, Vaara, E, Häkkinen, K, Kyröläinen, H, and Taipale, RS. Hormonal contraceptive use does not affect strength, endurance, or body composition adaptations to combined strength and endurance training in women. J Strength Cond Res 35(2): 449-457, 2021-This study examined the effects of a 10-week period of high-intensity combined strength and endurance training on strength, endurance, body composition, and serum hormone concentrations in physically active women using hormonal contraceptives (HCs, n = 9) compared with those who had never used hormonal contraceptives (NHCs, n = 9). Training consisted of 2 strength training sessions and 2 high-intensity running interval sessions per week. Maximal bilateral isometric leg press (Isom), maximal bilateral dynamic leg press (one repetition maximum [1RM]), countermovement jump (CMJ), a 3,000-m running test (3,000 m), body composition, and serum hormone levels were measured before and after training between days 1-5 of each subject's menstrual cycle. Both groups increased 1RM and CMJ: HC = 13.2% (p < 0.001) and 9.6% (p < 0.05), and NHC = 8.3% (p < 0.01) and 8.5% (p < 0.001). Hormonal contraceptive improved 3,000 m by 3.5% (p < 0.05) and NHC by 1% (n.s.). Never used hormonal contraceptive increased lean mass by 2.1% (p < 0.001), whereas body fat percentage decreased from 23.9 ± 6.7 to 22.4 ± 6.0 (-6.0%, p < 0.05). No significant changes were observed in body composition in HC. No significant between-group differences were observed in any of the performance variables. Luteinizing hormone concentrations decreased significantly (p < 0.05) over 10 weeks in NHC, whereas other hormone levels remained statistically unaltered in both groups. It seems that the present training is equally appropriate for improving strength, endurance, and body composition in women using HC as those not using HC without disrupting hypothalamic-pituitary-gonadal axis function.
Assuntos
Treino Aeróbico , Treinamento Resistido , Composição Corporal , Anticoncepcionais , Feminino , Humanos , Força Muscular , Resistência FísicaRESUMO
The purpose of the present study was to examine the influence of an acute bout of high-intensity resistance exercise on measures of cognitive function. Ten men (Mean ± SD: age = 24.4 ± 3.2 yrs; body mass = 85.7 ± 11.8 kg; height = 1.78 ± 0.08 m; 1 repetition maximum (1RM) = 139.0 ± 24.1 kg) gave informed consent and performed a high-intensity 6 sets of 10 repetitions of barbell back squat exercise at 80% 1RM with 2 minutes rest between sets. The Automated Neuropsychological Assessment Metrics (ANAM) was completed to assess various cognitive domains during the familiarization period, immediately before, and immediately after the high-intensity resistance exercise bout. The repeated measures ANOVAs for throughput scores (r·m-1) demonstrated significant mean differences for the Mathematical Processing task (MTH; p < 0.001, η2p = 0.625) where post hoc pairwise comparisons demonstrated that the post-fatigue throughput (32.0 ± 8.8 r·m-1) was significantly greater than the pre-fatigue (23.8 ± 7.4 r·m-1, p = 0.003, d = 1.01) and the familiarization throughput (26.4 ± 5.3 r·m-1, p = 0.024, d = 0.77). The Coded Substitution-Delay task also demonstrated significant mean differences (CDD; p = 0.027, η2p = 0.394) with post hoc pairwise comparisons demonstrating that the post-fatigue throughput (49.3 ± 14.4 r·m-1) was significantly less than the pre-fatigue throughput (63.2 ± 9.6 r·m-1, p = 0.011, d = 1.14). The repeated measures ANOVAs for reaction time (ms) demonstrated significant mean differences for MTH (p < 0.001, η2p = 0.624) where post hoc pairwise comparisons demonstrated that the post-fatigue reaction time (1885.2 ± 582.8 ms) was significantly less than the pre-fatigue (2518.2 ± 884.8 ms, p = 0.005, d = 0.85) and familiarization (2253.7 ± 567.6 ms, p = 0.009, d = 0.64) reaction times. The Go/No-Go task demonstrated significant mean differences (GNG; p = 0.031, η2p = 0.320) with post hoc pairwise comparisons demonstrating that the post-fatigue (285.9 ± 16.3 ms) was significantly less than the pre-fatigue (298.5 ± 12.1 ms, p = 0.006, d = 0.88) reaction times. High-intensity resistance exercise may elicit domain-specific influences on cognitive function, characterized by the facilitation of simple cognitive tasks and impairments of complex cognitive tasks.
Assuntos
Cognição/fisiologia , Treinamento Resistido/métodos , Adulto , Atenção , Frequência Cardíaca , Humanos , Ácido Láctico/sangue , Masculino , Memória , Rememoração Mental , Fadiga Muscular/fisiologia , Força Muscular , Tempo de Reação , Adulto JovemRESUMO
NEW FINDINGS: What is the central question of this study? Although acute responses of the principal gonadosteroid and corticosteroid hormones to resistance exercise are well documented, there is no information regarding how the key lower-concentration intermediary hormones respond and potentially influence these hormonal pathways. What is the main finding and its importance? This study provides evidence for cascading conversions of some gonadosteroids, and the data suggest that the testosterone concentration increases independently of these hormones. These findings challenge future studies to determine the exact physiological roles of the lower-concentration gonadosteroids and corticosteroids during and immediately after resistance exercise. ABSTRACT: Resistance training is a potent stimulus for muscle growth, and steroid hormones are known to play a role in this adaptation. However, very little is known about the acute exercise-induced gonadosteroid and corticosteroid hormone responses, including those of key lower-concentration intermediate hormones. The present study determined the acute responses of these steroid hormone families using quantitative ultra-high performance liquid chromatography tandem mass spectrometry after resistance exercise in strength-trained men. Venous and fingertip blood samples were obtained pre-, mid-, 5 min post- and 15 min post-resistance exercise, both before and after 10 weeks of supervised resistance training. The experimental resistance exercise sessions consisted of three sets of 10 repetitions of bilateral leg-press exercise and three sets of 10 repetitions of unilateral knee-extension exercise, with 2 and 1 min recovery between sets, respectively. Statistically significant (P < 0.05) increases in the concentration of hormones in the gonadosteroid [including dehydroepiandrosterone (DHEA), androstenedione, testosterone and estrone] and the corticosteroid (including cortisol, corticosterone and cortisone) families were demonstrated after both experimental resistance exercise sessions, irrespective of training status. Correlation analyses revealed relationships between the following hormones: (i) DHEA and androstenedione; (ii) DHEA and cortisol; (iii) androstenedione and estrone; and (iv) 11-deoxycortisol and cortisol. Testosterone appears to increase acutely and independently of other intermediary hormones after resistance exercise. In conclusion, lower-concentration intermediary gonadosteroids (e.g. estrone) and corticosteroids (e.g. corticosterone) respond robustly to resistance exercise in strength-trained men, although it seems that testosterone concentrations are regulated by factors other than the availability of precursor hormones and changes in plasma volume.
Assuntos
Corticosteroides/sangue , Exercício Físico/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Humanos , Hidrocortisona/sangue , Joelho/fisiologia , Masculino , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Testosterona/sangue , Adulto JovemRESUMO
Resistance training (RT) may improve metabolic health; however, the extent of its effectiveness is constantly evaluated to assess improvements in the group means, thus obscuring the heterogeneous individual effects. This study investigated inter-individual variation in response to RT as reflected in metabolic health indicators and how age, sex, nutrition, and pre-training phenotypes are associated with such variabilities. METHODS: Previously collected data of men and women (39-73 years, 135 trained, 73 non-trained controls) were pooled for analysis. Measurements were taken twice before training to estimate individual day-to-day variations and measurement errors (n = 208). The individual responsiveness to the 21-week RT in cardiometabolic health indicators (ie, systolic blood pressure, high-density lipoprotein cholesterol (HDL-C), cholesterol and triglycerides) was determined. Body composition was estimated by bioimpedance and dietary intake according to 4-day food diaries. RESULTS: Metabolic responses to RT seemed to be highly individual, and both beneficial and unfavorable changes were observed. Large inter-individual variations in training response were not explained by a subject's age, sex, body composition, or nutritional status, with the exception of improvements in HDL-C, which were associated with simultaneous decreases in body fat in older women. The incidence of metabolic syndrome diminished following RT. CONCLUSION: This study showed that RT could improve some specific metabolic health indicators beyond normal day-to-day variations, especially in blood lipid profile. Further studies are needed to elucidate genetic and other mechanisms underlining the heterogeneity of RT responses. This knowledge may be useful in providing individually tailored exercise prescriptions as part of personalized preventative health care.
Assuntos
Glicemia/metabolismo , Pressão Sanguínea , Colesterol/sangue , Treinamento Resistido , Triglicerídeos/sangue , Adulto , Idoso , Composição Corporal , Feminino , Humanos , Insulina/sangue , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/epidemiologia , Pessoa de Meia-Idade , Estado NutricionalRESUMO
PURPOSE: This study examined whether additional external load during the eccentric phase of lower limb strength training exercises led to greater adaptations in knee extensor strength, muscle architecture, and patellar tendon properties than traditional concentric-eccentric training in already-trained men. METHODS: Twenty-eight men accustomed to strength training were randomized to undertake 10 weeks of supervised traditional (TRAD) or accentuated eccentric loading (AEL) or continue their habitual unsupervised (CON) strength training. TRAD and AEL trained 2âweek-1 with a six-repetition maximum (RM) session and a ten-RM session. TRAD used the same external load in both concentric and eccentric phases, while AEL used 40% greater load during the eccentric than concentric phase. Tests were performed at pre- and post-training, including: maximum unilateral isokinetic (30°·s-1) concentric, eccentric and isometric torques by isokinetic dynamometry, unilateral isometric ramp contractions with muscle-tendon ultrasound imaging to measure tendon stiffness and hysteresis, and resting vastus lateralis and medialis fascicle angle and length measured by extended-field-of-view ultrasound. RESULTS: After training, both TRAD and AEL significantly increased maximum concentric and isometric torque (p < 0.05), but only AEL increased eccentric torque (AEL: + 10 ± 9%, TRAD: + 4 ± 9%) and vastus lateralis (AEL: + 14 ± 14%, TRAD: + 1 ± 10%) and medialis (AEL: + 19 ± 8%, TRAD: + 5 ± 11%) fascicle length. CONCLUSION: Both TRAD and AEL increased maximum knee extensor strength but only AEL increased VL and VM fascicle length. Neither training program promoted changes in fascicle angle or changes in patellar tendon properties in our already-trained men.
Assuntos
Fáscia/fisiologia , Ligamento Patelar/fisiologia , Treinamento Resistido/métodos , Humanos , Contração Isométrica , Masculino , Músculo Esquelético/fisiologia , Aptidão Física , Treinamento Resistido/efeitos adversos , Torque , Adulto JovemRESUMO
This study aimed to examine the validity of using bar velocity to estimate relative load in squat and bench-press exercises for both young men and women. Twenty-five men and 25 women performed a progressive loading test up to 1-RM in the squat and bench-press exercises, which were repeated after 2-weeks. Relationships between mean propulsive velocity and%1-RM were analysed. A second-order polynomial equation for predicting the corresponding velocity of each percentage of 1-RM was developed for men (validation). This equation was then applied in women (cross-validation). Moreover, a specific equation for women was developed (validation) and was also applied in a sub-sample of women (cross-validation). Close relationships (R2: 0.91-0.95) between bar velocity and relative load were observed in both sexes for squat and bench press. Men's equation applied to women showed a high level of agreement, although lower bias and higher level of agreement was observed when a sex-specific equation was applied in women, both validation and cross-validation samples. In conclusion, lifting velocity can be used to accurately prescribe the relative load regardless of sex in both upper-body and lower-body exercises, although when estimating load from velocity measures it will be necessary to use the sex-specific equation for each exercise.
Assuntos
Treinamento Resistido/métodos , Levantamento de Peso/fisiologia , Adulto , Interpretação Estatística de Dados , Feminino , Humanos , Extremidade Inferior/fisiologia , Masculino , Movimento , Reprodutibilidade dos Testes , Fatores Sexuais , Extremidade Superior/fisiologia , Suporte de Carga/fisiologia , Adulto JovemRESUMO
This study investigated acute hemodynamic, plasma volume and immunological responses to four loading protocols: sauna only, and sauna after endurance, strength or combined endurance and strength exercise. Twenty-seven healthy, slightly prehypertensive men (age 32.7±6.9 years) were measured at PRE, MID (after exercise), POST, POST30min and POST24h. The measurements consisted systolic and diastolic blood pressure, heart rate, body temperature and concentrations of high-sensitive C-reactive protein, white blood cells and plasma volume measurements. Endurance+sauna showed significant decreases in systolic blood pressure at POST (-8.9 mmHg), POST30min (-11.0 mmHg) and POST24h (-4.6 mmHg). At POST30min, significant decreases were also observed in sauna (-4.3 mmHg) and combined+sauna (-7.5 mmHg). Diastolic blood pressure decreased significantly from -5.4 to -3.9 mmHg at POST in all loadings. Plasma volume decreased significantly at MID in all exercise loadings and at POST in endurance+sauna and strength+sauna. Plasma volume increased significantly (p < 0.01) in endurance+sauna and combined+sauna at POST24h. White blood cells increased following all exercise+sauna loadings at MID, POST and POST30min, whereas high sensitive C-reactive protein showed no changes at any measurement point. The combination of endurance exercise and sauna showed the greatest positive effects on blood pressure. Both loadings including endurance exercise increased plasma volume on the next day.