Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Phys Chem Chem Phys ; 26(12): 9179-9196, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37921593

RESUMO

Nuclear spin-induced circular dichroism (NSCD) is a molecular effect of differential absorption of left- and right-circularly polarized light due to nuclear spins in the molecule. In this work, new tools for its calculation are presented. Specifically, analytic expressions for the computation of the K term of NSCD have been derived and implemented for the second-order coupled cluster singles and doubles (CC2) model. NSCD results obtained thereby for three derivatives of azobenzenes have been compared with results from time-dependent density functional theory (TD-DFT). The complementary information that could be obtained from NSCD measurements compared to NMR for these three species is discussed.

2.
J Comput Chem ; 44(24): 1941-1955, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37309870

RESUMO

The possibilities and problems to predict excited-state acidities and basicities in water with electronic structure calculations combined with a continuum solvation model are investigated for a test set of photoacids and photobases. Different error sources, like errors in the ground-state p K a values, the excitation energies in solution for the neutral and (de-)protonated species, basis set effects, and contributions beyond implicit solvation are investigated and their contributions to the total error in p K a ∗ are discussed. Density functional theory in combination with the conductor like screening model for real solvents and an empirical linear Gibbs free energy relationship are used to predict the ground-state p K a values. For the test set, this approach gives more accurate p K a values for the acids than for the bases. Time-dependent density-functional theory (TD-DFT) and second-order wave function methods in combination with the conductor like screening model are applied to compute excitation energies in water. Some TD-DFT functionals fail for several species to predict correctly the order of the lowest excitations. Where experimental data for absorption maxima in water is available, the implicit solvation model leads with the applied electronic structure methods in most cases for the excitation energies in water to an overestimation for the protonated and to an underestimation for the deprotonated species. The magnitude and sign of the errors depend on the hydrogen bond donating and accepting ability of the solute. We find that for aqueous solution this results generally in an underestimation in the p K a changes from the ground to the excited state for photoacids and an overestimation for photobases.

3.
Phys Chem Chem Phys ; 25(16): 11130-11144, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37021468

RESUMO

This work employs the correlated wavefunction-based methods ADC(2) and CC2 in combination with the implicit solvent model COSMO to calculate the UV/Vis absorption and fluorescence emission energies of particularly strong hydroxypyrene photoacids in acetone. According to the Förster cycle, the electronic transition energies are first used to compute , i.e., the pKa change upon excitation and then the excited-state pKa (labeled ) with ground-state pKa values based on COSMO-RS as additional inputs. Furthermore, for the strongest photoacid of that class, namely tris(1,1,1,3,3,3-hexafluoropropan-2-yl)-8-hydroxypyrene-1,3,6-trisulfonate, the need to go beyond implicit solvation and to account for explicit solvent effects on the electronic transition energies and the resulting ΔpKa is investigated in the solvents acetone, dimethyl sulfoxide (DMSO), and water. For this, a hybrid implicit-explicit approach is followed by comparing micro-solvated structures that are generated based on Kamlet-Taft considerations. While implicit solvent effects are mostly sufficient for the aprotic solvent acetone, one explicit solvent molecule seems relevant for DMSO due to its stronger hydrogen-bond (HB) acceptance and hence larger interaction with the photoacid OH group as a HB donor. For the protic solvent water, the situation is more complicated, involving at least one water molecule at the OH group and up to three water molecules at the O- group of the corresponding base. Finally, these results are used to rationalize the experimentally observed spectral evolution of the photoacid absorption band in acetone-water solvent mixtures.

4.
J Comput Chem ; 43(15): 1011-1022, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35460090

RESUMO

In this contribution we extent the use of the conductor-like screening model for realistic solvation (COSMO-RS) to the prediction of pKa values in acetone, a commonly used dipolar aprotic solvent. For this, we calculated the Gibbs free energy of dissociation of 120 organic acids (nine acrylic acids, 87 benzoic acids, nine phenols, and 15 benzenesulfonamides) using COSMO-RS at the two levels BP-TZVP and BP-TZVPD-FINE and determined the parameters for a linear free energy relation for the pKa prediction by performing linear fits to experimental values. Our results suggest that the data set dissects into two groups, with the phenols being different from the other three subsets. The acrylic and benzoic acids and the sulfonamides can be treated together and yield an excellent linear correlation ( r2>0.95 ) with an RMSD of only ~0.3. The slope is found to be significantly smaller than the theoretical value ( 1/RTln10 ), only 45% of it, which is in accordance with findings in the literature. The phenols, however, while similarly well correlated in their own subset with an RMSD of 1.7-1.9, exhibit a slope larger than one. We discuss both a higher uncertainty in the reference values as well as physical origins as possible reasons.


Assuntos
Acetona , Benzoatos , Fenóis , Solventes , Termodinâmica
5.
Phys Chem Chem Phys ; 24(38): 23195-23208, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129022

RESUMO

Iron and cobalt-based oxides crystallizing in the spinel structure are efficient and affordable catalysts for the oxidation of organics, yet, the detailed understanding of their surface structure and reactivity is limited. To fill this gap, we have investigated the (001) surfaces of cobalt ferrite, CoFe2O4, with the A- and B-layer terminations using density functional theory (DFT/PBE0) and an embedded cluster model. We have considered the five-fold coordinated Co2+/3+ (Oh), two-fold coordinated Fe2+ (Td), and an oxygen vacancy, as active sites for the adsorption of water and short-chain alcohols: methanol, ethanol, and 2-propanol, in the low coverage regime. The adsorbates dissociate upon adsorption on the Fe sites whereas the adsorption is mainly molecular on Co. At oxygen vacancies, the adsorbates always dissociate, fill the vacancy and form (partially) hydroxylated surfaces. The computed vibrational spectra for the most stable configurations are compared with results from diffuse reflectance infrared Fourier transform spectroscopy.

6.
J Phys Chem A ; 126(35): 5911-5923, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36037028

RESUMO

This work applies the thermodynamic Förster cycle to theoretically investigate the pKa*, i.e., excited-state pKa values of pyranine-derived superphotoacids developed by Jung and co-workers. The latter photoacids are strong enough to transfer a proton to the aprotic solvent dimethyl sulfoxide (DMSO). The Förster cycle provides access to pKa* via the ground-state pKa and the electronic excitation energies. We use the conductor-like screening model for real solvents (COSMO-RS) to compute the ground-state pKa and the correlated wavefunction-based methods ADC(2) and CC2 with the continuum solvation model COSMO to calculate the pKa change upon excitation. A comparison of the calculated UV/Vis absorption and fluorescence emission energies to the experimental results leads us to infer that this approach allows for a proper description of the electronic excitations. In particular, implicit solvation by means of the COSMO model appears to be sufficient for the treatment of these photoacids in DMSO. The calculations confirm the presumption that a charge redistribution from the hydroxy group to the aromatic ring and the electron-withdrawing substituents is the origin of photoacidity for these photoacids. Moreover, the calculations with the continuum solvation model predict that the pKa jump upon excitation decreases with increasing solvent polarity, as rationalized based on the Förster cycle.


Assuntos
Dimetil Sulfóxido , Modelos Teóricos , Humanos , Prótons , Solventes , Termodinâmica
7.
J Chem Phys ; 157(20): 204101, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36456237

RESUMO

Frozen density embedding (FDE) is an embedding method for complex environments that is simple for users to set up. It reduces the computation time by dividing the total system into small subsystems and approximating the interaction by a functional of their densities. Its combination with wavefunction methods is, however, limited to small- or medium-sized molecules because of the steep scaling in computation time of these methods. To mitigate this limitation, we present a combination of the FDE approach with pair natural orbitals (PNOs) in the TURBOMOLE software package. It combines the uncoupled FDE (FDEu) approach for excitation energy calculations with efficient implementations of second-order correlation methods in the ricc2 and pnoccsd programs. The performance of this combination is tested for tetraazaperopyrene (TAPP) molecular crystals. It is shown that the PNO truncation error on environment-induced shifts is significantly smaller than the shifts themselves and, thus, that the local approximations of PNO-based wavefunction methods can without the loss of relevant digits be combined with the FDE method. Computational wall times are presented for two TAPP systems. The scaling of the wall times is compared to conventional supermolecular calculations and demonstrates large computational savings for the combination of FDE- and PNO-based methods. Additionally, the behavior of excitation energies with the system size is investigated. It is found that the excitation energies converge quickly with the size of the embedding environment for the TAPPs investigated in the current study.

8.
J Comput Chem ; 42(32): 2264-2282, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34636424

RESUMO

We present an automatized workflow which, starting from molecular dynamics simulations, identifies reaction events, filters them, and prepares them for accurate quantum chemical calculations using, for example, Density Functional Theory (DFT) or Coupled Cluster methods. The capabilities of the automatized workflow are demonstrated by the example of simulations for the combustion of some polycyclic aromatic hydrocarbons (PAHs). It is shown how key elementary reaction candidates are filtered out of a much larger set of redundant reactions and refined further. The molecular species in question are optimized using DFT and reaction energies, barrier heights, and reaction rates are calculated. The setup is general enough to include at this stage configurational sampling, which can be exploited in the future. Using the introduced machinery, we investigate how the observed reaction types depend on the gas atmosphere used in the molecular dynamics simulation. For the re-optimization on the DFT level, we show how the additional information needed to switch from reactive force-field to electronic structure calculations can be filled in and study how well ReaxFF and DFT agree with each other and shine light on the perspective of using more accurate semi-empirical methods in the MD simulation.

9.
Chemistry ; 27(68): 17115-17126, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34668611

RESUMO

Dioxygen activation pathways on the (001) surfaces of cobalt ferrite, CoFe2 O4 , were investigated computationally using density functional theory and the hybrid Perdew-Burke-Ernzerhof exchange-correlation functional (PBE0) within the periodic electrostatic embedded cluster model. We considered two terminations: the A-layer exposing Fe2+ and Co2+ metal sites in tetrahedral and octahedral positions, respectively, and the B-layer exposing octahedrally coordinated Co3+ . On the A-layer, molecular oxygen is chemisorbed as a superoxide on the Fe monocenter or bridging a Fe-Co cation pair, whereas on the B-layer it is adsorbed at the most stable anionic vacancy. Activation is promoted by transfer of electrons provided by the d metal centers onto the adsorbed oxygen. The subsequent dissociation of dioxygen into monoatomic species and surface reoxidation have been identified as the most critical steps that may limit the rate of the oxidation processes. Of the reactive metal-O species, [FeIII -O]2+ is thermodynamically most stable, while the oxygen of the Co-O species may easily migrate across the A-layer with barriers smaller than the associative desorption.

10.
Phys Chem Chem Phys ; 23(12): 7480-7494, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33876108

RESUMO

We investigate how the absorption and fluorescence of halogenated imidazolium compounds in acetonitrile solution is influenced by the presence of counterions and the ability to act as halogen-bond donors. Experimental measurements and quantum chemical calculations with correlated wavefunction methods are applied to study three monodentate halogen-bond complexes of iodo-imidazolium, iodo-benzimidazolium and bromo-benzimidazolium cations with triflate counterions, and a bidentate complex of bis(iodo-benzimidazolium) dications with chloride as counterion. The three monodentate complexes with triflate counterions relax after photoexcitation to minima on the S1 potential energy surface where the C-I bond and the IO halogen bond are partially broken. For the bidentate complex with the smaller chloride counterion the halogen-bond interaction stays intact in the S1 minimum that is reached by relaxation from the Franck-Condon point. In a complementing experimental approach, stationary absorption and emission as well as transient fluorescence spectra are recorded for iodo- and bromo-benzimidazolium in acetonitrile. Variation of the counterion, substitution of the iodine by bromine, hydrogen, or methyl, and the comparison to theory allows the identification of spectroscopic signatures and photoinduced dynamics associated with ion-pairing.

11.
J Phys Chem A ; 125(33): 7198-7206, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34379425

RESUMO

Electrostatic interaction of the solvent with the solute and fluctuations of the solvent configurations may make excitation energies of the solute different from those in the gas phase. These effects may dominate photoinduced or chemical reaction dynamics in solution systems and can be observed as shifts or broadening of peaks in absorption spectra. In this work, the nitrogen K-edge X-ray absorption spectra were measured for pyridazine in the gas phase and in aqueous solution. The ultraviolet and X-ray absorption spectra of pyridazine in aqueous solution, as well as those in the gas phase, were then calculated with models based on the algebraic-diagrammatic construction through second order [ADC(2)] with the resolution-of-identity (RI) approximation and compared with the spectra obtained in experiments. For aqueous solution, explicit local solvation structures were extracted from an ab initio molecular dynamics (AIMD) trajectory of pyridazine in bulk water, and RI-ADC(2) was combined with the conductor-like screening model (COSMO). The experimental absorption spectra of pyridazine in aqueous solution were reproduced with good accuracy by theoretical treatment of an ensemble containing the explicit local solvation structures of pyridazine with relevant water molecules combined with the COSMO solvation model of water for long-range solvation.

12.
J Chem Phys ; 154(12): 124110, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810703

RESUMO

An implementation of a complex solver for the solution of the linear equations required to compute the complex response functions of damped response theory is presented for the resolution-of-identity (RI) coupled cluster singles and approximate doubles (CC2) method. The implementation uses a partitioned formulation that avoids the storage of double excitation amplitudes to make it applicable to large molecules. The solver is the keystone element for the development of the damped coupled cluster response formalism for linear and nonlinear effects in resonant frequency regions at the RI-CC2 level of theory. Illustrative results are reported for the one-photon absorption cross section of C60, the electronic circular dichroism of n-helicenes (n = 5, 6, 7), and the C6 dispersion coefficients of a set of selected organic molecules and fullerenes.

13.
Angew Chem Int Ed Engl ; 60(12): 6807-6815, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33284506

RESUMO

Biomass-derived 5-hydroxymethylfurfural (HMF) is regarded as one of the most promising platform chemicals to produce 2,5-dimethylfuran (DMF) as a potential liquid transportation fuel. Pd nanoparticles supported on N-containing and N-free mesoporous carbon materials were prepared, characterized, and applied in the hydrogenolysis of HMF to DMF under mild reaction conditions. Quantitative conversion of HMF to DMF was achieved in the presence of formic acid (FA) and H2 over Pd/NMC within 2 h. The reaction mechanism, especially the multiple roles of FA, was explored through a detailed comparative study by varying hydrogen source, additive, and substrate as well as by applying in situ ATR-IR spectroscopy. The major role of FA is to shift the dominant reaction pathway from the hydrogenation of the aldehyde group to the hydrogenolysis of the hydroxymethyl group via the protonation by FA at the C-OH group, lowering the activation barrier of the C-O bond cleavage and thus significantly enhancing the reaction rate. XPS results and DFT calculations revealed that Pd2+ species interacting with pyridine-like N atoms significantly enhance the selective hydrogenolysis of the C-OH bond in the presence of FA due to their high ability for the activation of FA and the stabilization of H- .

14.
Phys Chem Chem Phys ; 22(15): 8233-8234, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32242570

RESUMO

Correction for 'A quantum chemical study of hydrogen adsorption on carbon-supported palladium clusters' by Lisa Warczinski et al., Phys. Chem. Chem. Phys., 2019, 21, 21577-21587, DOI: 10.1039/c9cp04606b.

15.
Phys Chem Chem Phys ; 22(37): 21317-21325, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32935678

RESUMO

Pd nanoparticles deposited on nitrogen-doped mesoporous carbon are promising catalysts for highly selective and effective catalytic hydrogenation reactions. To design and utilize these novel catalysts, it is essential to understand the effect of N doping on the metal-support interactions. A combined experimental (X-ray photoelectron spectroscopy) and computational (density functional theory) approach is used to identify preferential adsorption sites and to give detailed explanations of the corresponding metal-support interactions. Pyridinic N atoms turned out to be the preferential adsorption sites for Pd nanoparticles on nitrogen-doped mesoporous carbon, interacting through their lone pairs (LPs) with the Pd atoms via N-LP - Pd dσ and N-LP - Pd s and Pd dπ - π* charge transfer, which leads to a change in the Pd oxidation state. Our results evidence the existence of bifunctional palladium nanoparticles containing Pd0 and Pd2+ centers.

16.
J Phys Chem A ; 124(46): 9626-9637, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33147026

RESUMO

Hydrogen abstraction is one of the crucial initial key steps in the combustion of polycyclic aromatic hydrocarbons. For an accurate theoretical prediction of heterogeneous combustion processes, larger systems need to be treated as compared to pure gas phase reactions. We address here the question on how transferable activation and reaction energies computed for small molecular models are to larger polyaromatics. The approximate transferability of energy contributions is a key assumption for multiscale modeling approaches. To identify efficient levels of accuracy, we start with accurate coupled-cluster and density functional theory (DFT) calculations for different sizes of polyaromatics. More approximate methods as the reactive force-field ReaxFF and the extended semi-empirical tight binding (xTB) methods are then benchmarked against these data sets in terms of reaction energies and equilibrium geometries. Furthermore, we analyze the role of bond-breaking and relaxation energies, vibrational contributions, and post-Hartree-Fock correlation corrections on the reaction, and for the activation energies, we analyze the validity of the Bell-Evans-Polanyi and Hammond principles. First, we find good transferability for this process and that the predictivity of small models at high theoretical levels is way superior than any approximate method can deliver. Second, ReaxFF can serve as a qualitative exploration method, whereas GFN2-xTB in combination with GFN1-xTB appears as a favorable tool to bridge between DFT and ReaxFF so that we propose a multimethod scheme with employing ReaxFF, GFN1/GFN2-xTB, DFT, and coupled cluster to cope effectively with such a complex reactive system.

17.
J Chem Phys ; 153(3): 034109, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716174

RESUMO

We present a pair natural orbital (PNO)-based implementation of CC3 excitation energies, which extends our previously published state-specific PNO ansatz for the solution of the excited state eigenvalue problem to methods including connected triple excitations. A thorough analysis of the equations for the excited state triples amplitudes is presented from which we derive a suitable state-specific triple natural orbital basis for the excited state triples amplitudes, which performs equally well for local and non-local excitations. The accuracy of the implementation is evaluated using a large and diverse test set. We find that for states with small contributions from double excitations, a T0 approximation to PNO-CC3 yields accurate results with a mean absolute error (MAE) for TPNO = 10-7 in the range of 0.02 eV. However, for states with larger double excitation contributions, the T0 approximation is found to yield significantly less accurate results, while the Laplace-transformed variant of PNO-CC3 shows a uniform accuracy for singly and doubly excited states (MAE and maximum error of 0.01 eV and 0.07 eV for TPNO = 10-7, respectively). Finally, we apply PNO-CC3 to the calculation of the first excited state of berenil at a S1 minimum geometry, which is shown to be close to a conical intersection. This calculation in the aug-cc-pVTZ basis set (more than 1300 basis functions) is the largest calculation ever performed with CC3 on excitation energies.

18.
J Chem Phys ; 152(17): 174109, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32384836

RESUMO

In the present work, we report the derivation and implementation of vertical ionization potentials (IPs) and electron affinities (EAs) for embedded wavefunction methods as well as the corresponding analytical nuclear gradients. Vertical transitions have been implemented for CIS(D∞), the second-order algebraic diagrammatic construction [ADC(2)] scheme, and the second-order approximate coupled-cluster singles and doubles method. For all methods, density fitting is applied to facilitate reduced memory and disk storage requirements. Analytical nuclear gradients have been derived and implemented for CIS(D∞) and ADC(2) both with and without frozen-density embedding (FDE). The objective of the reported method is to study the properties of organic semiconductors in which charge is transported along molecular stacks in molecular crystals. The accuracy of the implemented methods is, therefore, assessed using stacked dimers of small model systems. Albeit second-order methods can yield noticeable errors with respect to reference methods in terms of absolute IP and EA values, they show a significantly improved accuracy for the shift of the IP and EA values at different intermolecular distances relative to the monomers. Besides reducing the computational costs, the FDE ansatz introduces furthermore a significant conceptual difference as it enables control over which subsystem is ionized, allowing for the calculation of transfer integrals for the interacting (embedded) systems. The new implementation is finally applied to tetraazaperopyrenes, used as organic semiconductors, to study charge-localization and long-range polarization in particular.

19.
J Chem Phys ; 152(18): 184107, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32414256

RESUMO

TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy-cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe-Salpeter methods, second-order Møller-Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE's functionality, including excited-state methods, RPA and Green's function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE's current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE's development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted.

20.
Phys Chem Chem Phys ; 21(38): 21577-21587, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31539000

RESUMO

A key step for achieving better insight into catalytic hydrogenation reactions is to understand in detail the process of hydrogen adsorption on the catalyst. The present article focuses on hydrogen adsorption on carbon-supported palladium clusters, which are nowadays one of the most common catalysts in industrial applications. Density functional theory is applied to study Pd6 and Pd21 clusters to reveal the influence of the carbon support material on the properties of the catalyst as well as on the mechanisms and energetics of the hydrogen adsorption. In general, a stepwise hydrogen adsorption process is observed consisting of molecular adsorption followed by dissociative chemisorption. The carbon support material does not noticeably affect the reaction mechanisms, but has a large influence on energy barriers and preferential adsorption sites. Our comparison of Pd6 and Pd21 systems reveals that small clusters, such as Pd6, are able to model some but not all important properties of palladium nanoparticles and, therefore, it is essential to also study larger cluster sizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA