Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nanotechnology ; 35(28)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38579688

RESUMO

Spatially resolved x-ray fluorescence (XRF) based analysis employing incident beam sizes in the low micrometer range (µXRF) is widely used to study lateral composition changes of various types of microstructured samples. However, up to now the quantitative analysis of such experimental datasets could only be realized employing adequate calibration or reference specimen. In this work, we extent the applicability of the so-called reference-free XRF approach to enable reference-freeµXRF analysis. Here, no calibration specimen are needed in order to derive a quantitative and position sensitive composition of the sample of interest. The necessary instrumental steps to realize reference-freeµXRF are explained and a validation of ref.-freeµXRF against ref.-free standard XRF is performed employing laterally homogeneous samples. Finally, an application example from semiconductor research is shown, where the lateral sample features require the usage of ref.-freeµXRF for quantitative analysis.

2.
Phys Chem Chem Phys ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938190

RESUMO

A methodology based on molecular dynamics simulations is presented to determine the chemical potential of thiol self-assembled monolayers on a gold surface. The thiol de-solvation and then the monolayer formation are described by thermodynamic integration with a gradual decoupling of one molecule from the environment, with the necessary corrections to account for standard state changes. The procedure is applied both to physisorbed undissociated thiol molecules and to chemisorbed dissociated thiyl radicals, considering in the latter case the possible chemical potential of the produced hydrogen. We considered monolayers formed by either 7-mercapto-4-methylcoumarin (MMC) or 3-mercapto-propanoic acid (MPA) on a flat gold surface: the free energy profiles with respect to the monolayer density are consistent with a transition from a very stable lying-down phase at low densities to a standing-up phase at higher densities, as expected. The maximum densities of thermodynamically stable monolayers are compared to experimental measures performed with reference-free grazing-incidence X-ray fluorescence (RF-GIXRF) on the same systems, finding a better agreement in the case of chemisorbed thiyl radicals.

3.
Small ; 19(9): e2204943, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36521935

RESUMO

A reliable and quantitative material analysis is crucial for assessing new technological processes, especially to facilitate a quantitative understanding of advanced material properties at the nanoscale. To this end, X-ray fluorescence microscopy techniques can offer an element-sensitive and non-destructive tool for the investigation of a wide range of nanotechnological materials. Since X-ray radiation provides information depths of up to the microscale, even stratified or buried arrangements are easily accessible without invasive sample preparation. However, in terms of the quantification capabilities, these approaches are usually restricted to a qualitative or semi-quantitative analysis at the nanoscale. Relying on comparable reference nanomaterials is often not straightforward or impossible because the development of innovative nanomaterials has proven to be more fast-paced than any development process for appropriate reference materials. The present work corroborates that a traceable quantification of individual nanoobjects can be realized by means of an X-ray fluorescence microscope when utilizing rather conventional but well-calibrated instrumentation instead of reference materials. As a proof of concept, the total number of atoms forming a germanium nanoobject is quantified using soft X-ray radiation. Furthermore, complementary dimensional parameters of such objects are reconstructed.

4.
Small ; 18(6): e2105776, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34821030

RESUMO

The spatial and compositional complexity of 3D structures employed in today's nanotechnologies has developed to a level at which the requirements for process development and control can no longer fully be met by existing metrology techniques. For instance, buried parts in stratified nanostructures, which are often crucial for device functionality, can only be probed in a destructive manner in few locations as many existing nondestructive techniques only probe the objects surfaces. Here, it is demonstrated that grazing exit X-ray fluorescence can simultaneously characterize an ensemble of regularly ordered nanostructures simultaneously with respect to their dimensional properties and their elemental composition. This technique is nondestructive and compatible to typically sized test fields, allowing the same array of structures to be studied by other techniques. For crucial parameters, the technique provides sub-nm discrimination capabilities and it does not require access-limited large-scale research facilities as it is compatible to laboratory-scale instrumentation.


Assuntos
Nanoestruturas , Nanoestruturas/química , Nanotecnologia
5.
Phys Chem Chem Phys ; 24(36): 22083-22090, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36073159

RESUMO

Self-assembled monolayers (SAM) of 7-mercapto-4-methylcoumarin (MMC) on a flat gold surface were studied by molecular dynamics (MD) simulations, reference-free grazing incidence X-ray fluorescence (GIXRF) and X-ray photoelectron spectroscopy (XPS), to determine the maximum monolayer density and to investigate the nature of the molecule/surface interface. In particular, the protonation state of the sulfur atom upon adsorption was analyzed, since some recent literature presented evidence for physisorbed thiols (preserving the S-H bond), unlike the common picture of chemisorbed thiyls (losing the hydrogen). MD with a specifically tailored force field was used to simulate either thiol or thiyl monolayers with increasing number of molecules, to determine the maximum dynamically stable densities. This result was refined by computing the monolayer chemical potential as a function of the density with the bennet acceptance ratio method, based again on MD simulations. The monolayer density was also measured with GIXRF, which provided the absolute quantification of the number of sulfur atoms in a dense self-assembled monolayer (SAM) on flat gold surfaces. The sulfur core level binding energies in the same monolayers were measured by XPS, fitting the recorded spectra with the binding energies proposed in the literature for free or adsorbed thiols and thiyls, to get insight on the nature of the molecular species present in the layer. The comparison of theoretical and experimental SAM densities, and the XPS analysis strongly support the picture of a monolayer formed by chemisorbed, dissociated thiyls.

6.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578723

RESUMO

Suspensions of hemoglobin microparticles (HbMPs) are promising tools as oxygen therapeutics. For the approval of clinical studies extensive characterization of these HbMPs with a size of about 750 nm is required regarding physical properties, function, pharmaco-kinetics and toxicology. The standard absorbance measurements in blood gas analyzers require dissolution of red blood cells which does not work for HbMP. Therefore, we have developed a robust and rapid optical method for the quality and functionality control of HbMPs. It allows simultaneous determination of the portion of the two states of hemoglobin oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) as well as the content of methemoglobin (metHb). Based on the measurement of collimated transmission spectra between 300 nm and 800 nm, the average extinction cross section of HbMPs is derived. A numerical method is applied to determine the composition of the HbMPs based on their wavelength-dependent refractive index (RI), which is a superposition of the three different states of Hb. Thus, light-scattering properties, including extinction cross sections can be simulated for different compositions and sizes. By comparison to measured spectra, the relative concentrations of oxyHb, deoxyHb, metHb are accessible. For validation of the optically determined composition of the HbMPs, we used X-ray fluorescence spectrometry for the ratio of Fe(II) (oxyHb/deoxyHb) and Fe(III) (metHb). High accuracy density measurements served to access heme-free proteins, size was determined by dynamic light scattering and analytical centrifugation and the shape of the HbMPs was visualized by electron and atomic force microscopy.


Assuntos
Substitutos Sanguíneos/análise , Metemoglobina/análise , Animais , Bovinos , Humanos , Oxiemoglobinas/análise , Tamanho da Partícula , Espectrometria por Raios X
7.
J Anal At Spectrom ; 35(11)2020.
Artigo em Inglês | MEDLINE | ID: mdl-34092880

RESUMO

We present experimental and theoretical X-ray emission spectroscopy (XES) data of the Fe Kß line for Iron(II)sulfide (FeS) and Iron(II)disulfide (FeS2). In comparison to X-ray absorption spectroscopy (XAS), XES offers different discrimination capabilities for chemical speciation, depending on the valence states of the compounds probed and, more importantly in view of a a broader, laboratory-based use, a larger flexibility with respect to the excitation source used. The experimental Fe Kß XES data was measured using polychromatic X-ray radiation and a compact full-cylinder von Hamos spectrometer while the calculations were realized using the OCEAN code. The von Hamos spectrometer used is characterized by an energy window of up to 700 eV and a spectral resolving power of E/ΔE = 800. The large energy window at a single position of the spectrometer components is made profit of to circumvent the instrumental sensitivity of wavelength-dispersive spectrometers to sample positioning. This results in a robust energy scale which is used to compare experimental data with ab initio valence-to-core calculations, which are carried out using the ocean package. To validate the reliability of the ocean package for the two sample systems, near edge X-ray absorption fine structure measurements of the Fe K absorption edge are compared to theory using the same input parameters as in the case of the X-ray emission calculations. Based on the example of iron sulfide compounds, the combination of XES experiments and ocean calculations allows unravelling the electronic structure of different transition metal sulfides and qualifying XES investigations for the speciation of different compounds.

8.
Nanotechnology ; 31(50): 505709, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33021220

RESUMO

The increasing importance of well-controlled ordered nanostructures on surfaces represents a challenge for existing metrology techniques. To develop such nanostructures and monitor complex processing constraints fabrication, both a dimensional reconstruction of nanostructures and a characterization (ideally a quantitative characterization) of their composition is required. In this work, we present a soft x-ray fluorescence-based methodology that allows both of these requirements to be addressed at the same time. By applying the grazing-incidence x-ray fluorescence technique and thus utilizing the x-ray standing wave field effect, nanostructures can be investigated with a high sensitivity with respect to their dimensional and compositional characteristics. By varying the incident angles of the exciting radiation, element-sensitive fluorescence radiation is emitted from different regions inside the nanoobjects. By applying an adequate modeling scheme, these datasets can be used to determine the nanostructure characteristics. We demonstrate these capabilities by performing an element-sensitive reconstruction of a lamellar grating made of Si3N4, where GIXRF data for the O-Kα and N-Kα fluorescence emission allows a thin oxide layer to be reconstructed on the surface of the grating structure. In addition, we employ the technique also to three dimensional nanostructures and derive both dimensional and compositional parameters in a quantitative manner.

9.
Phys Rev Lett ; 113(16): 163001, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25361254

RESUMO

An experimental method for the verification of the individually different energy dependencies of L(1)-, L(2)-, and L(3)- subshell photoionization cross sections is described. The results obtained for Pd and Mo are well in line with theory regarding both energy dependency and absolute values, and confirm the theoretically calculated cross sections by Scofield from the early 1970 s and, partially, more recent data by Trzhaskovskaya, Nefedov, and Yarzhemsky. The data also demonstrate the questionability of quantitative x-ray spectroscopical results based on the widely used fixed jump ratio approximated cross sections with energy independent ratios. The experiments are carried out by employing the radiometrically calibrated instrumentation of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II in Berlin; the obtained fluorescent intensities are thereby calibrated at an absolute level in reference to the International System of Units. Experimentally determined fixed fluorescence line ratios for each subshell are used for a reliable deconvolution of overlapping fluorescence lines. The relevant fundamental parameters of Mo and Pd are also determined experimentally in order to calculate the subshell photoionization cross sections independently of any database.

10.
ACS Appl Polym Mater ; 5(3): 2079-2087, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427013

RESUMO

The sequential infiltration synthesis (SIS) of inorganic materials in nanostructured block copolymer templates has rapidly progressed in the last few years to develop functional nanomaterials with controllable properties. To assist this rapid evolution, expanding the capabilities of nondestructive methods for quantitative characterization of the materials properties is required. In this paper, we characterize the SIS process on three model polymers with different infiltration profiles through ex situ quantification by reference-free grazing incidence X-ray fluorescence. More qualitative depth distribution results were validated by means of X-ray photoelectron spectroscopy and scanning transmission electron microscopy combined with energy-dispersive X-ray spectroscopy.

11.
ACS Appl Mater Interfaces ; 15(50): 57992-58002, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37991460

RESUMO

Metasurfaces have garnered increasing research interest in recent years due to their remarkable advantages, such as efficient miniaturization and novel functionalities compared to traditional optical elements such as lenses and filters. These advantages have facilitated their rapid commercial deployment. Recent advancements in nanofabrication have enabled the reduction of optical metasurface dimensions to the nanometer scale, expanding their capabilities to cover visible wavelengths. However, the pursuit of large-scale manufacturing of metasurfaces with customizable functions presents challenges in controlling the dimensions and composition of the constituent dielectric materials. To address these challenges, the combination of block copolymer (BCP) self-assembly and sequential infiltration synthesis (SIS), offers an alternative for fabrication of high-resolution dielectric nanostructures with tailored composition and optical functionalities. However, the absence of metrological techniques capable of providing precise and reliable characterization of the refractive index of dielectric nanostructures persists. This study introduces a hybrid metrology strategy that integrates complementary synchrotron-based traceable X-ray techniques to achieve comprehensive material characterization for the determination of the refractive index on the nanoscale. To establish correlations between material functionality and their underlying chemical, compositional and dimensional properties, TiO2 nanostructures model systems were fabricated by SIS of BCPs. The results from synchrotron-based analyses were integrated into physical models, serving as a validation scheme for laboratory-scale measurements to determine effective refractive indices of the nanoscale dielectric materials.

12.
Anal Chim Acta ; 1192: 339367, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35057956

RESUMO

Knowledge on the temporal and size distribution of particulate matter (PM) in air as well as on its elemental composition is a key information for source appointment, for the investigation of their influence on environmental processes and for providing reliable data for climate models. While cascade impactors allow for time- and size-resolved collection of airborne PM, total reflection X-ray fluorescence (TXRF) allows for element-sensitive investigation of minute sample amounts thanks to its detection sensitivity. But during quantification by means of TXRF it is crucial to be aware of the linear calibration limits of TXRF in order to identify situations where collection times or pollution levels in the different size partitions were exceedingly long or high. Indeed, TXRF can only be reliably used when the amount of matter collected on the top of the substrate is sufficiently small. By means of grazing incidence X-ray fluorescence (GIXRF), where the excitation conditions are varied in a controlled and reliable manner and include also the TXRF regime, a self consistent quantification of elemental mass depositions can be performed in order to validate or falsify TXRF quantification results. For low mass depositions an agreement within a few percent for the different excitation conditions was found, while for increasing amounts of material relative errors of up to a factor of 4 were found for TXRF as compared to GIXRF. Thus, TXRF cannot be applied to all samples regardless of their coverage and threshold values for the validity of quantification results need to be determined. As a flexible solution, GIXRF allows extending the dynamic range of reliably quantifiable mass depositions beyond the linear regime of TXRF, an important advantage when variable amounts of airborne PM need to be quantified as in the case of collection with cascade impactors. The presented more reliable quantification approach can be transferred to mobile tabletop instrumentation as well. This aspect is highly relevant for air quality monitoring in terms of supporting the introduction of appropriate legislation and measures for health and climate protection as well as for supporting their enforcement.


Assuntos
Modelos Climáticos , Material Particulado , Calibragem , Espectrometria por Raios X , Raios X
13.
Nanoscale ; 14(41): 15475-15483, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36226758

RESUMO

The grazing emission X-ray fluorescence (GEXRF) technique offers a promising approach to determining the spatial distribution of various chemical elements in nanostructures. In this paper, we present a comparison with grazing incidence small-angle X-ray scattering (GISAXS), an established method for dimensional nanometrology, on periodic TiO2 nanostructures fabricated by a self-aligned double patterning (SADP) process. We further test the potential of GEXRF for process control in the presence of residual chromium on the structures. The angle-resolved fluorescence emission as well as the scattered radiation from the surface are collected with photon-counting hybrid pixel area detectors using scanning-free detection schemes. By modelling the X-ray standing wave (XSW) field in the vicinity of and inside the nanostructure, it is possible to obtain both the angle-resolved fluorescence intensities and the far-field scattering intensities from the same model. The comparison also illustrates that for ensemble photon-based measurement methods, accounting for roughness effects and imperfections can be essential when modelling advanced nanostructured surfaces.

14.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364540

RESUMO

Scan-free grazing-emission X-ray fluorescence spectroscopy (GEXRF) is an established technique for the investigation of the elemental depth-profiles of various samples. Recently it has been applied to investigating structured nanosamples in the tender X-ray range. However, lighter elements such as oxygen, nitrogen or carbon cannot be efficiently investigated in this energy range, because of the ineffective excitation. Moreover, common CCD detectors are not able to discriminate between fluorescence lines below 1 keV. Oxygen and nitrogen are important components of insulation and passivation layers, for example, in silicon oxide or silicon nitride. In this work, scan-free GEXRF is applied in proof-of-concept measurements for the investigation of lateral ordered 2D nanostructures in the soft X-ray range. The sample investigated is a Si3N4 lamellar grating, which represents 2D periodic nanostructures as used in the semiconductor industry. The emerging two-dimensional fluorescence patterns are recorded with a CMOS detector. To this end, energy-dispersive spectra are obtained via single-photon event evaluation. In this way, spatial and therefore angular information is obtained, while discrimination between different photon energies is enabled. The results are compared to calculations of the sample model performed by a Maxwell solver based on the finite-elements method. A first measurement is carried out at the UE56-2 PGM-2 beamline at the BESSY II synchrotron radiation facility to demonstrate the feasibility of the method in the soft X-ray range. Furthermore, a laser-produced plasma source (LPP) is utilized to investigate the feasibility of this technique in the laboratory. The results from the BESSY II measurements are in good agreement with the simulations and prove the applicability of scan-free GEXRF in the soft X-ray range for quality control and process engineering of 2D nanostructures. The LPP results illustrate the chances and challenges concerning a transfer of the methodology to the laboratory.

15.
Nanomaterials (Basel) ; 11(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201579

RESUMO

The characterization of nanostructured surfaces with sensitivity in the sub-nm range is of high importance for the development of current and next-generation integrated electronic circuits. Modern transistor architectures for, e.g., FinFETs are realized by lithographic fabrication of complex, well-ordered nanostructures. Recently, a novel characterization technique based on X-ray fluorescence measurements in grazing incidence geometry was proposed for such applications. This technique uses the X-ray standing wave field, arising from an interference between incident and the reflected radiation, as a nanoscale sensor for the dimensional and compositional parameters of the nanostructure. The element sensitivity of the X-ray fluorescence technique allows for a reconstruction of the spatial element distribution using a finite element method. Due to a high computational time, intelligent optimization methods employing machine learning algorithms are essential for timely provision of results. Here, a sampling of the probability distributions by Bayesian optimization is not only fast, but it also provides an initial estimate of the parameter uncertainties and sensitivities. The high sensitivity of the method requires a precise knowledge of the material parameters in the modeling of the dimensional shape provided that some physical properties of the material are known or determined beforehand. The unknown optical constants were extracted from an unstructured but otherwise identical layer system by means of soft X-ray reflectometry. The spatial distribution profiles of the different elements contained in the grating structure were compared to scanning electron and atomic force microscopy and the influence of carbon surface contamination on the modeling results were discussed. This novel approach enables the element sensitive and destruction-free characterization of nanostructures made of silicon nitride and silicon oxide with sub-nm resolution.

16.
Anal Bioanal Chem ; 396(8): 2825-32, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19941133

RESUMO

A need for analysis techniques, complementary to secondary ion mass spectrometry (SIMS), for depth profiling dopants in silicon for ultra shallow junction (USJ) applications in CMOS technologies has recently emerged following the difficulties SIMS is facing there. Grazing incidence X-ray fluorescence (GIXRF) analysis in the soft X-ray range is a high-potential tool for this purpose. It provides excellent conditions for the excitation of the B-K and the As-L(iii,ii) shells. The X-ray standing wave (XSW) field associated with GIXRF on flat samples is used here as a tunable sensor to obtain information about the implantation profile because the in-depth changes of the XSW intensity are dependent on the angle of incidence. This technique is very sensitive to near-surface layers and is therefore well suited for the analysis of USJ distributions. Si wafers implanted with either arsenic or boron at different fluences and implantation energies were used to compare SIMS with synchrotron radiation-induced GIXRF analysis. GIXRF measurements were carried out at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring BESSY II using monochromatized undulator radiation of well-known radiant power and spectral purity. The use of an absolutely calibrated energy-dispersive detector for the acquisition of the B-Kalpha and As-Lalpha fluorescence radiation enabled the absolute determination of the total retained dose. The concentration profile was obtained by ab initio calculation and comparison with the angular measurements of the X-ray fluorescence.

17.
Nanoscale ; 10(13): 6177-6185, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29561052

RESUMO

The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.

18.
J Appl Crystallogr ; 49(Pt 6): 2161-2171, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27980515

RESUMO

Cr/Sc multilayer systems can be used as near-normal incidence mirrors for the water window spectral range. It is shown that a detailed characterization of these multilayer systems with 400 bilayers of Cr and Sc, each with individual layer thicknesses <1 nm, is attainable by the combination of several analytical techniques. EUV and X-ray reflectance measurements, resonant EUV reflectance across the Sc L edge, and X-ray standing wave fluorescence measurements were used. The parameters of the multilayer model were determined via a particle-swarm optimizer and validated using a Markov chain Monte Carlo maximum-likelihood approach. For the determination of the interface roughness, diffuse scattering measurements were conducted.

19.
Materials (Basel) ; 7(4): 3147-3159, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28788611

RESUMO

The accurate characterization of nanolayered systems is an essential topic for today's developments in many fields of material research. Thin high-k layers and gate stacks are technologically required for the design of current and future electronic devices and can be deposited, e.g., by Atomic Layer Deposition (ALD). However, the metrological challenges to characterize such systems demand further development of analytical techniques. Reference-free Grazing Incidence X-ray Fluorescence (GIXRF) based on synchrotron radiation can significantly contribute to the characterization of such nanolayered systems. GIXRF takes advantage of the incident angle dependence of XRF, in particular below the substrate's critical angle where changes in the X-ray Standing Wave field (XSW) intensity influence the angular intensity profile. The reliable modeling of the XSW in conjunction with the radiometrically calibrated instrumentation at the PTB allows for reference-free, fundamental parameter-based quantitative analysis. This approach is very well suited for the characterization of nanoscaled materials, especially when no reference samples with sufficient quality are available. The capabilities of this method are demonstrated by means of two systems for transistor gate stacks, i.e., Al2O3 high-k layers grown on Si or Si/SiO2 and Sc2O3 layers on InGaAs/InP substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA