Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34528691

RESUMO

The germ cell lineage in mammals is induced by the stimulation of pluripotent epiblast cells by signaling molecules. Previous studies have suggested that the germ cell differentiation competence or responsiveness of epiblast cells to signaling molecules is established and maintained in epiblast cells of a specific differentiation state. However, the molecular mechanism underlying this process has not been well defined. Here, using the differentiation model of mouse epiblast stem cells (EpiSCs), we have shown that two defined EpiSC lines have robust germ cell differentiation competence. However, another defined EpiSC line has no competence. By evaluating the molecular basis of EpiSCs with distinct germ cell differentiation competence, we identified YAP, an intracellular mediator of the Hippo signaling pathway, as crucial for the establishment of germ cell induction. Strikingly, deletion of YAP severely affected responsiveness to inductive stimuli, leading to a defect in WNT target activation and germ cell differentiation. In conclusion, we propose that the Hippo/YAP signaling pathway creates a potential for germ cell fate induction via mesodermal WNT signaling in pluripotent epiblast cells.


Assuntos
Células Germinativas/metabolismo , Camadas Germinativas/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Feminino , Via de Sinalização Hippo/fisiologia , Masculino , Camundongos , Células-Tronco/metabolismo , Via de Sinalização Wnt/fisiologia
2.
Cell ; 136(3): 411-9, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19203577

RESUMO

The four transcription factors Oct4, Sox2, Klf4, and c-Myc can induce pluripotency in mouse and human fibroblasts. We previously described direct reprogramming of adult mouse neural stem cells (NSCs) by Oct4 and either Klf4 or c-Myc. NSCs endogenously express Sox2, c-Myc, and Klf4 as well as several intermediate reprogramming markers. Here we report that exogenous expression of the germline-specific transcription factor Oct4 is sufficient to generate pluripotent stem cells from adult mouse NSCs. These one-factor induced pluripotent stem cells (1F iPS) are similar to embryonic stem cells in vitro and in vivo. Not only can these cells can be efficiently differentiated into NSCs, cardiomyocytes, and germ cells in vitro, but they are also capable of teratoma formation and germline transmission in vivo. Our results demonstrate that Oct4 is required and sufficient to directly reprogram NSCs to pluripotency.


Assuntos
Células-Tronco Adultas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Células-Tronco Embrionárias/metabolismo , Células Germinativas/citologia , Fator 4 Semelhante a Kruppel , Antígenos CD15/metabolismo , Camundongos , Miócitos Cardíacos/citologia
3.
EMBO Rep ; 22(8): e52553, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34156139

RESUMO

Fine-tuned dissolution of pluripotency is critical for proper cell differentiation. Here we show that the mesodermal transcription factor, T, globally affects the properties of pluripotency through binding to Oct4 and to the loci of other pluripotency regulators. Strikingly, lower T levels coordinately affect naïve pluripotency, thereby directly activating the germ cell differentiation program, in contrast to the induction of germ cell fate of primed models. Contrary to the effect of lower T levels, higher T levels more severely affect the pluripotency state, concomitantly enhancing the somatic differentiation program and repressing the germ cell differentiation program. Consistent with such in vitro findings, nascent germ cells in vivo are detected in the region of lower T levels at the posterior primitive streak. Furthermore, T and core pluripotency regulators co-localize at the loci of multiple germ cell determinants responsible for germ cell development. In conclusion, our findings indicate that residual pluripotency establishes the earliest and fundamental regulatory mechanism for inductive germline segregation from somatic lineages.


Assuntos
Células Germinativas , Mesoderma , Diferenciação Celular , Separação Celular , Fatores de Transcrição
4.
EMBO J ; 34(8): 1009-24, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25750208

RESUMO

Primordial germ cells (PGCs) develop only into sperm and oocytes in vivo. The molecular mechanisms underlying human PGC specification are poorly understood due to inaccessibility of cell materials and lack of in vitro models for tracking the earliest stages of germ cell development. Here, we describe a defined and stepwise differentiation system for inducing pre-migratory PGC-like cells (PGCLCs) from human pluripotent stem cells (PSCs). In response to cytokines, PSCs differentiate first into a heterogeneous mesoderm-like cell population and then into PGCLCs, which exhibit minimal PRDM14 expression. PGC specification in humans is similar to the murine process, with the sequential activation of mesodermal and PGC genes, and the suppression of neural induction and of de novo DNA methylation, suggesting that human PGC formation is induced via epigenesis, the process of germ cell specification via inductive signals from surrounding somatic cells. This study demonstrates that PGC commitment in humans shares key features with that of the mouse, but also highlights key differences, including transcriptional regulation during the early stage of human PGC development (3-6 weeks). A more comprehensive understanding of human germ cell development may lead to methodology for successfully generating PSC-derived gametes for reproductive medicine.


Assuntos
Diferenciação Celular/genética , Células Germinativas/fisiologia , Células-Tronco Pluripotentes/fisiologia , Proteínas Repressoras/genética , Ativinas/farmacologia , Animais , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA , Epigênese Genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Germinativas/citologia , Humanos , Camundongos , Análise em Microsséries , Células-Tronco Pluripotentes/efeitos dos fármacos , Proteínas de Ligação a RNA , Fatores de Transcrição , Transcriptoma/efeitos dos fármacos
5.
Hum Mol Genet ; 20(1): 115-25, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20940145

RESUMO

Molecular mechanisms underlying the commitment of cells to the germ cell lineage during mammalian embryogenesis remain poorly understood due to the limited availability of cellular materials to conduct in vitro analyses. Although primordial germ cells (PGCs)--precursors to germ cells--have been generated from embryonic stem cells (ESCs)--pluripotent stem cells derived from the inner cell mass of the blastocyst of the early embryo in vitro-the simultaneous expression of cell surface receptors and transcription factors complicates the detection of PGCs. To date, only a few genes that mark the onset of germ cell commitment in the epiblast--the outer layer of cells of the embryo--including tissue non-specific alkaline phosphatase (TNAP), Blimp1, Stella and Fragilis--have been used with some success to detect PGC formation in in vitro model systems. Here, we identified 11 genes (three of which are novel) that are specifically expressed in male and female fetal germ cells, both in vivo and in vitro, but are not expressed in ESCs. Expression of these genes allows us to distinguish committed germ cells from undifferentiated pluripotent cell populations, a prerequisite for the successful derivation of germ cells and gametes in vitro.


Assuntos
Perfilação da Expressão Gênica , Células Germinativas/metabolismo , Animais , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Endodesoxirribonucleases/genética , Feminino , Desenvolvimento Fetal/genética , Marcadores Genéticos , Humanos , Masculino , Meiose , Camundongos , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética
6.
Development ; 137(21): 3551-60, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20876643

RESUMO

Oct1 (Pou2f1) is a transcription factor of the POU-homeodomain family that is unique in being ubiquitously expressed in both embryonic and adult mouse tissues. Although its expression profile suggests a crucial role in multiple regions of the developing organism, the only essential function demonstrated so far has been the regulation of cellular response to oxidative and metabolic stress. Here, we describe a loss-of-function mouse model for Oct1 that causes early embryonic lethality, with Oct1-null embryos failing to develop beyond the early streak stage. Molecular and morphological analyses of Oct1 mutant embryos revealed a failure in the establishment of a normal maternal-embryonic interface due to reduced extra-embryonic ectoderm formation and lack of the ectoplacental cone. Oct1(-/-) blastocysts display proper segregation of trophectoderm and inner cell mass lineages. However, Oct1 loss is not compatible with trophoblast stem cell derivation. Importantly, the early gastrulation defect caused by Oct1 disruption can be rescued in a tetraploid complementation assay. Oct1 is therefore primarily required for the maintenance and differentiation of the trophoblast stem cell compartment during early post-implantation development. We present evidence that Cdx2, which is expressed at high levels in trophoblast stem cells, is a direct transcriptional target of Oct1. Our data also suggest that Oct1 is required in the embryo proper from late gastrulation stages onwards.


Assuntos
Desenvolvimento Embrionário/genética , Transportador 1 de Cátions Orgânicos/fisiologia , Trofoblastos/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Perda do Embrião/genética , Embrião de Mamíferos , Feminino , Idade Gestacional , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/metabolismo , Gravidez , Fatores de Tempo , Trofoblastos/metabolismo
7.
Methods Enzymol ; 418: 284-307, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17141042

RESUMO

Embryonic stem cells (ESCs), derivatives of totipotential cells of early mammalian embryos, have proven to be one of the most powerful tools for studying developmental and stem cell biology. When injected into embryos, ESCs can contribute to tissues derived from all three germ layers and to the germ line. Prior studies have successfully shown that ESCs can recapitulate features of embryonic development by spontaneously forming somatic lineages in culture. More recent studies using differentiating monolayer cultures and embryoid bodies have shown that mouse ESCs can also form germ cells that are capable of undergoing meiosis and forming both male and female gametes. This chapter provides detailed instruction on how to differentiate ESCs in monolayer cultures to derive germ cells and oocyte-like structures and presents standard methodologies for detecting expression of key genetic pathways required for primordial germ cell (PGC) development and oogenesis in vivo. While the full potential of these ESC-derived germ cells and oocyte-like structures remains to be demonstrated, this assay provides a new approach to studying reproductive developmental biology in vitro.


Assuntos
Oócitos/citologia , Oócitos/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Separação Celular/métodos , Meios de Cultura , Desenvolvimento Embrionário , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Feminino , Fibroblastos/citologia , Regulação da Expressão Gênica , Mamíferos , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Reprod Fertil Dev ; 18(1-2): 7-12, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16478597

RESUMO

In recent years, the scientific community has become increasingly interested in spermatogonia. Methodological breakthroughs, such as germ cell transplantation and spermatogonial culture combined with novel germ line transfection strategies, have provided interesting new opportunities for studying the physiology of spermatogonial stem cells and their interaction with the stem cell niche. Furthermore, intense research into pluripotent and adult stem cells has generated new insight into the differentiation pathway of germ line stem cells and has opened new perspectives for stem cell technologies. The present review briefly introduces the physiology of spermatogonial stem cells and discusses future directions of basic research and practical approaches applicable to livestock maintenance and animal reproduction.


Assuntos
Preservação do Sêmen/métodos , Espermatogônias/citologia , Espermatogônias/fisiologia , Células-Tronco/fisiologia , Animais , Masculino , Preservação do Sêmen/tendências , Células-Tronco/citologia
9.
Mech Dev ; 115(1-2): 157-60, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12049782

RESUMO

In somatic cells, imprinted genes are expressed monoallelically according to parent-of-origin. In contrast, in 11.5 days post-coitum primordial germ cells (PGCs), and later stage germ cells, these same genes are expressed biallelically, suggesting that imprints inherited from the gametes are largely erased by this stage. To determine when in germ cell development this biallelic expression phenomenon commences, we isolated migrating PGCs by flow cytometry and determined the allele-specific expression of four imprinted genes - Snrpn, Igf2, H19 and Igf2r. The first three genes were expressed monoallelically, while the latter gene was expressed biallelically. These results show that inherited imprints regulating monoallelic expression are largely intact in migrating PGCs.


Assuntos
Alelos , Expressão Gênica , Impressão Genômica , Óvulo/metabolismo , Espermatozoides/metabolismo , Animais , Autoantígenos , Feminino , Fator de Crescimento Insulin-Like II/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Óvulo/citologia , RNA Longo não Codificante , RNA não Traduzido/genética , Receptor IGF Tipo 2/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Espermatozoides/citologia , Proteínas Centrais de snRNP
10.
PLoS One ; 9(8): e103985, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25140725

RESUMO

Expression of germ cell nuclear factor (GCNF; Nr6a1), an orphan member of the nuclear receptor gene family of transcription factors, during gastrulation and neurulation is critical for normal embryogenesis in mice. Gcnf represses the expression of the POU-domain transcription factor Oct4 (Pou5f1) during mouse post-implantation development. Although Gcnf expression is not critical for the embryonic segregation of the germ cell lineage, we found that sexually dimorphic expression of Gcnf in germ cells correlates with the expression of pluripotency-associated genes, such as Oct4, Sox2, and Nanog, as well as the early meiotic marker gene Stra8. To elucidate the role of Gcnf during mouse germ cell differentiation, we generated an ex vivo Gcnf-knockdown model in combination with a regulated CreLox mutation of Gcnf. Lack of Gcnf impairs normal spermatogenesis and oogenesis in vivo, as well as the derivation of germ cells from embryonic stem cells (ESCs) in vitro. Inactivation of the Gcnf gene in vivo leads to loss of repression of Oct4 expression in both male and female gonads.


Assuntos
Gametogênese/fisiologia , Gônadas/crescimento & desenvolvimento , Membro 1 do Grupo A da Subfamília 6 de Receptores Nucleares/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Membro 1 do Grupo A da Subfamília 6 de Receptores Nucleares/genética , Fator 3 de Transcrição de Octâmero/metabolismo
11.
Stem Cells Dev ; 20(12): 2205-15, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21244227

RESUMO

Germ cells are a unique population of cells responsible for transmitting genetic information from one generation to the next. Our understanding of the key mechanisms underlying germ cell development in vivo remains scarce because of insufficient amounts of cell materials available for conducting biological studies. The establishment of in vitro differentiation models that support the generation of germ cells from mouse pluripotent stem cells provides an alternative means for studying reproductive development. The detection and analysis of stem cell-derived germ cells, however, present technical challenges. Methods for determining the developmental stage of germ cells ex vivo, such as gene expression and/or immunochemical analyses are inadequate, frequently necessitating the use of alternative, elaborate methods to prove germ cell identity. We have generated putative oocytes and granulosa cells in vitro from mouse embryonic stem cells and utilized electron microscopy to characterize these cells. Here, we report on the striking ultrastructural similarity of in vitro-generated oocytes and granulosa cells to in vivo oocytes developing within follicles.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/ultraestrutura , Células da Granulosa/ultraestrutura , Oócitos/ultraestrutura , Animais , Biomarcadores/metabolismo , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Regulação da Expressão Gênica , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Camundongos , Oócitos/citologia , Oócitos/metabolismo
12.
Science ; 300(5623): 1251-6, 2003 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12730498

RESUMO

Continuation of mammalian species requires the formation and development of the sexually dimorphic germ cells. Cultured embryonic stem cells are generally considered pluripotent rather than totipotent because of the failure to detect germline cells under differentiating conditions. Here we show that mouse embryonic stem cells in culture can develop into oogonia that enter meiosis, recruit adjacent cells to form follicle-like structures, and later develop into blastocysts. Oogenesis in culture should contribute to various areas, including nuclear transfer and manipulation of the germ line, and advance studies on fertility treatment and germ and somatic cell interaction and differentiation.


Assuntos
Blastocisto/fisiologia , Diferenciação Celular , Embrião de Mamíferos/citologia , Oócitos/fisiologia , Oogênese , Células-Tronco Totipotentes/fisiologia , Fatores de Transcrição , Animais , Biomarcadores/análise , Blastocisto/citologia , Adesão Celular , Agregação Celular , Linhagem da Célula , Separação Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Estradiol/metabolismo , Feminino , Expressão Gênica , Genes Reporter , Meiose , Camundongos , Camundongos Transgênicos , Fator 3 de Transcrição de Octâmero , Oócitos/citologia , Folículo Ovariano/citologia , Folículo Ovariano/fisiologia , Proteínas Recombinantes de Fusão , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA