Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(1): E99-E108, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344294

RESUMO

Fragile X mental retardation protein (FMRP) and Ataxin-2 (Atx2) are triplet expansion disease- and stress granule-associated proteins implicated in neuronal translational control and microRNA function. We show that Drosophila FMRP (dFMR1) is required for long-term olfactory habituation (LTH), a phenomenon dependent on Atx2-dependent potentiation of inhibitory transmission from local interneurons (LNs) to projection neurons (PNs) in the antennal lobe. dFMR1 is also required for LTH-associated depression of odor-evoked calcium transients in PNs. Strong transdominant genetic interactions among dFMR1, atx2, the deadbox helicase me31B, and argonaute1 (ago1) mutants, as well as coimmunoprecitation of dFMR1 with Atx2, indicate that dFMR1 and Atx2 function together in a microRNA-dependent process necessary for LTH. Consistently, PN or LN knockdown of dFMR1, Atx2, Me31B, or the miRNA-pathway protein GW182 increases expression of a Ca2+/calmodulin-dependent protein kinase II (CaMKII) translational reporter. Moreover, brain immunoprecipitates of dFMR1 and Atx2 proteins include CaMKII mRNA, indicating respective physical interactions with this mRNA. Because CaMKII is necessary for LTH, these data indicate that fragile X mental retardation protein and Atx2 act via at least one common target RNA for memory-associated long-term synaptic plasticity. The observed requirement in LNs and PNs supports an emerging view that both presynaptic and postsynaptic translation are necessary for long-term synaptic plasticity. However, whereas Atx2 is necessary for the integrity of dendritic and somatic Me31B-containing particles, dFmr1 is not. Together, these data indicate that dFmr1 and Atx2 function in long-term but not short-term memory, regulating translation of at least some common presynaptic and postsynaptic target mRNAs in the same cells.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Habituação Psicofisiológica , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Olfato/fisiologia , Animais , Ataxinas , Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica , Genes Reporter , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Memória de Longo Prazo , MicroRNAs/metabolismo , Microscopia de Fluorescência , Mutação , Plasticidade Neuronal
2.
Development ; 139(10): 1798-805, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22461564

RESUMO

Transcription factor codes play an essential role in neuronal specification and axonal guidance in both vertebrate and invertebrate organisms. However, how transcription codes regulate axon pathfinding remains poorly understood. One such code defined by the homeodomain transcription factor Even-skipped (Eve) and by the GATA 2/3 homologue Grain (Grn) is specifically required for motor axon projection towards dorsal muscles in Drosophila. Using different mutant combinations, we present genetic evidence that both Grn and Eve are in the same pathway as Unc-5 in dorsal motoneurons (dMNs). In grn mutants, in which dMNs fail to reach their muscle targets, dMNs show significantly reduced levels of unc-5 mRNA expression and this phenotype can be partially rescued by the reintroduction of unc-5. We also show that both eve and grn are required independently to induce expression of unc-5 in dMNs. Reconstitution of the eve-grn transcriptional code of a dMN in dMP2 neurons, which do not project to lateral muscles in Drosophila, is able to reprogramme those cells accordingly; they robustly express unc-5 and project towards the muscle field as dMNs. Each transcription factor can independently induce unc-5 expression but unc-5 expression is more robust when both factors are expressed together. Furthermore, dMP2 exit is dependent on the level of unc-5 induced by eve and grn. Taken together, our data strongly suggests that the eve-grn transcriptional code controls axon guidance, in part, by regulating the level of unc-5 expression.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Transcrição GATA/metabolismo , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Animais , Drosophila , Proteínas de Drosophila/genética , Fatores de Transcrição GATA/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Development ; 134(4): 713-22, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17215305

RESUMO

Cell-shape changes during development require a precise coupling of the cytoskeleton with proteins situated in the plasma membrane. Important elements controlling the shape of cells are the Spectrin proteins that are expressed as a subcortical cytoskeletal meshwork linking specific membrane receptors with F-actin fibers. Here, we demonstrate that Drosophila karussell mutations affect beta-spectrin and lead to distinct axonal patterning defects in the embryonic CNS. karussell mutants display a slit-sensitive axonal phenotype characterized by axonal looping in stage-13 embryos. Further analyses of individual, labeled neuroblast lineages revealed abnormally structured growth cones in these animals. Cell-type-specific rescue experiments demonstrate that beta-Spectrin is required autonomously and non-autonomously in cortical neurons to allow normal axonal patterning. Within the cell, beta-Spectrin is associated with alpha-Spectrin. We show that expression of the two genes is tightly regulated by post-translational mechanisms. Loss of beta-Spectrin significantly reduces levels of neuronal alpha-Spectrin expression, whereas gain of beta-Spectrin leads to an increase in alpha-Spectrin protein expression. Because the loss of alpha-spectrin does not result in an embryonic nervous system phenotype, beta-Spectrin appears to act at least partially independent of alpha-Spectrin to control axonal patterning.


Assuntos
Axônios/fisiologia , Padronização Corporal , Sistema Nervoso Central/embriologia , Espectrina/fisiologia , Animais , Sistema Nervoso Central/citologia , Drosophila/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica , Mutação , Neurônios/citologia , Neurônios/fisiologia , Fenótipo , Isoformas de Proteínas , Espectrina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA