Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Public Health ; 23(1): 816, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143023

RESUMO

BACKGROUND: Internet gaming disorder (IGD) is receiving increasing attention owing to its effects on daily living and psychological function. METHODS: In this study, electroencephalography was used to compare neural activity triggered by repeated presentation of a stimulus in healthy controls (HCs) and those with IGD. A total of 42 adult men were categorized into two groups (IGD, n = 21) based on Y-IAT-K scores. Participants were required to watch repeated presentations of video games while wearing a head-mounted display, and the delta (D), theta (T), alpha (A), beta (B), and gamma (G) activities in the prefrontal (PF), central (C), and parieto-occipital (PO) regions were analyzed. RESULTS: The IGD group exhibited higher absolute powers of DC, DPO, TC, TPO, BC, and BPO than HCs. Among the IGD classification models, a neural network achieves the highest average accuracy of 93% (5-fold cross validation) and 84% (test). CONCLUSIONS: These findings may significantly contribute to a more comprehensive understanding of the neurological features associated with IGD and provide potential neurological markers that can be used to distinguish between individuals with IGD and HCs.


Assuntos
Comportamento Aditivo , Jogos de Vídeo , Masculino , Adulto , Humanos , Comportamento Aditivo/psicologia , Fissura , Transtorno de Adição à Internet , Eletroencefalografia , Internet
2.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015973

RESUMO

Head-mounted display (HMD) virtual reality devices can facilitate positive experiences such as co-presence and deep immersion; however, motion sickness (MS) due to these experiences hinders the development of the VR industry. This paper proposes a method for assessing MS caused by watching VR content on an HMD using cardiac features. Twenty-eight undergraduate volunteers participated in the experiment by watching VR content on a 2D screen and HMD for 12 min each, and their electrocardiogram signals were measured. Cardiac features were statistically analyzed using analysis of covariance (ANCOVA). The proposed model for classifying MS was implemented in various classifiers using significant cardiac features. The results of ANCOVA reveal a significant difference between 2D and VR viewing conditions, and the correlation coefficients between the subjective ratings and cardiac features have significant results in the range of -0.377 to -0.711 (for SDNN, pNN50, and ln HF) and 0.653 to 0.677 (for ln VLF and ln VLF/ln HF ratio). Among the MS classification models, the linear support vector machine achieves the highest average accuracy of 91.1% (10-fold cross validation) and has a significant permutation test outcome. The proposed method can contribute to quantifying MS and establishing viewer-friendly VR by determining its qualities.


Assuntos
Enjoo devido ao Movimento , Óculos Inteligentes , Realidade Virtual , Humanos
3.
Sensors (Basel) ; 21(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300382

RESUMO

Both physiological and neurological mechanisms are reflected in pupillary rhythms via neural pathways between the brain and pupil nerves. This study aims to interpret the phenomenon of motion sickness such as fatigue, anxiety, nausea and disorientation using these mechanisms and to develop an advanced non-contact measurement method from an infrared webcam. Twenty-four volunteers (12 females) experienced virtual reality content through both two-dimensional and head-mounted device interpretations. An irregular pattern of the pupillary rhythms, demonstrated by an increasing mean and standard deviation of pupil diameter and decreasing pupillary rhythm coherence ratio, was revealed after the participants experienced motion sickness. The motion sickness was induced while watching the head-mounted device as compared to the two-dimensional virtual reality, with the motion sickness strongly related to the visual information processing load. In addition, the proposed method was verified using a new experimental dataset for 23 participants (11 females), with a classification performance of 89.6% (n = 48) and 80.4% (n = 46) for training and test sets using a support vector machine with a radial basis function kernel, respectively. The proposed method was proven to be capable of quantitatively measuring and monitoring motion sickness in real-time in a simple, economical and contactless manner using an infrared camera.


Assuntos
Enjoo devido ao Movimento , Realidade Virtual , Fadiga , Feminino , Humanos , Pupila , Percepção Visual
4.
Sensors (Basel) ; 21(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34283122

RESUMO

Assistant devices such as meal-assist robots aid individuals with disabilities and support the elderly in performing daily activities. However, existing meal-assist robots are inconvenient to operate due to non-intuitive user interfaces, requiring additional time and effort. Thus, we developed a hybrid brain-computer interface-based meal-assist robot system following three features that can be measured using scalp electrodes for electroencephalography. The following three procedures comprise a single meal cycle. (1) Triple eye-blinks (EBs) from the prefrontal channel were treated as activation for initiating the cycle. (2) Steady-state visual evoked potentials (SSVEPs) from occipital channels were used to select the food per the user's intention. (3) Electromyograms (EMGs) were recorded from temporal channels as the users chewed the food to mark the end of a cycle and indicate readiness for starting the following meal. The accuracy, information transfer rate, and false positive rate during experiments on five subjects were as follows: accuracy (EBs/SSVEPs/EMGs) (%): (94.67/83.33/97.33); FPR (EBs/EMGs) (times/min): (0.11/0.08); ITR (SSVEPs) (bit/min): 20.41. These results revealed the feasibility of this assistive system. The proposed system allows users to eat on their own more naturally. Furthermore, it can increase the self-esteem of disabled and elderly peeople and enhance their quality of life.


Assuntos
Interfaces Cérebro-Computador , Robótica , Idoso , Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Estimulação Luminosa , Qualidade de Vida
5.
Bioconjug Chem ; 31(5): 1392-1399, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208715

RESUMO

Recently we have reported that the ortho-hydroxy-protected aryl sulfate (OHPAS) system can be exploited as a new self-immolative group (SIG) for phenolic payloads. We extended the system to nonphenolic payloads by simply introducing a para-hydroxy benzyl (PHB) spacer. As an additional variation of the system, we explored a benzylsulfonate version of the OHPAS system and found that it has two distinct breakdown pathways, cyclization and 1,4-elimination, the latter of which implies that para-hydroxy-protected (PHP) benzylsulfonate (BS) can also be used as an alternative SIG. The PHP-BS system was found to be stable chemically and in mouse and human plasma, having payload release rates comparable to those of the original OHPAS conjugates.


Assuntos
Portadores de Fármacos/química , Mesilatos/química , Animais , Ciclização , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Mesilatos/sangue , Camundongos , Proibitinas
6.
Sensors (Basel) ; 18(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29301261

RESUMO

The increase in the number of adolescents with internet gaming disorder (IGD), a type of behavioral addiction is becoming an issue of public concern. Teaching adolescents to suppress their craving for gaming in daily life situations is one of the core strategies for treating IGD. Recent studies have demonstrated that computer-aided treatment methods, such as neurofeedback therapy, are effective in relieving the symptoms of a variety of addictions. When a computer-aided treatment strategy is applied to the treatment of IGD, detecting whether an individual is currently experiencing a craving for gaming is important. We aroused a craving for gaming in 57 adolescents with mild to severe IGD using numerous short video clips showing gameplay videos of three addictive games. At the same time, a variety of biosignals were recorded including photoplethysmogram, galvanic skin response, and electrooculogram measurements. After observing the changes in these biosignals during the craving state, we classified each individual participant's craving/non-craving states using a support vector machine. When video clips edited to arouse a craving for gaming were played, significant decreases in the standard deviation of the heart rate, the number of eye blinks, and saccadic eye movements were observed, along with a significant increase in the mean respiratory rate. Based on these results, we were able to classify whether an individual participant felt a craving for gaming with an average accuracy of 87.04%. This is the first study that has attempted to detect a craving for gaming in an individual with IGD using multimodal biosignal measurements. Moreover, this is the first that showed that an electrooculogram could provide useful biosignal markers for detecting a craving for gaming.


Assuntos
Fissura , Adolescente , Comportamento do Adolescente , Comportamento Aditivo , Humanos , Internet , Jogos de Vídeo
7.
Artigo em Inglês | MEDLINE | ID: mdl-37021903

RESUMO

The phenomena of brain-computer interface-inefficiency in transfer rates and reliability can hinder development and use of brain-computer interface technology. This study aimed to enhance the classification performance of motor imagery-based brain-computer interface (three-class: left hand, right hand, and right foot) of poor performers using a hybrid-imagery approach that combined motor and somatosensory activity. Twenty healthy subjects participated in these experiments involving the following three paradigms: (1) Control-condition: motor imagery only, (2) Hybrid-condition I: combined motor and somatosensory stimuli (same stimulus: rough ball), and (3) Hybrid-condition II: combined motor and somatosensory stimuli (different stimulus: hard and rough, soft and smooth, and hard and rough ball). The three paradigms for all participants, achieved an average accuracy of 63.60±21.62%, 71.25±19.53%, and 84.09±12.79% using the filter bank common spatial pattern algorithm (5-fold cross-validation), respectively. In the poor performance group, the Hybrid-condition II paradigm achieved an accuracy of 81.82%, showing a significant increase of 38.86% and 21.04% in accuracy compared to the control-condition (42.96%) and Hybrid-condition I (60.78%), respectively. Conversely, the good performance group showed a pattern of increasing accuracy, with no significant difference between the three paradigms. The Hybrid-condition II paradigm provided high concentration and discrimination to poor performers in the motor imagery-based brain-computer interface and generated the enhanced event-related desynchronization pattern in three modalities corresponding to different types of somatosensory stimuli in motor and somatosensory regions compared to the Control-condition and Hybrid-condition I. The hybrid-imagery approach can help improve motor imagery-based brain-computer interface performance, especially for poorly performing users, thus contributing to the practical use and uptake of brain-computer interface.

8.
Front Physiol ; 12: 744071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733176

RESUMO

The aim of this study was to determine the effect of heartbeat-evoked potentials (HEPs) on the performance of an event-related potential (ERP)-based classification of mental workload (MWL). We produced low- and high-MWLs using a mental arithmetic task and measured the ERP response of 14 participants. ERP trials were divided into three conditions based on the effect of HEPs on ERPs: ERPHEP, containing the heartbeat in a period of 280-700ms in ERP epochs after the target; ERPA-HEP, not including the heartbeat within the same period; and ERPT, all trials including ERPA-HEP and ERPHEP. We then compared MWL classification performance using the amplitude and latency of the P600 ERP among the three conditions. The ERPA-HEP condition achieved an accuracy of 100% using a radial basis function-support vector machine (with 10-fold cross-validation), showing an increase of 14.3 and 28.6% in accuracy compared to ERPT (85.7%) and ERPHEP (71.4%), respectively. The results suggest that evoked potentials caused by heartbeat overlapped or interfered with the ERPs and weakened the ERP response to stimuli. This study reveals the effect of the evoked potentials induced by heartbeats on the performance of the MWL classification based on ERPs.

9.
Front Psychol ; 12: 714333, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630223

RESUMO

The proliferating and excessive use of internet games has caused various comorbid diseases, such as game addiction, which is now a major social problem. Recently, the American Psychiatry Association classified "Internet gaming disorder (IGD)" as an addiction/mental disorder. Although many studies have been conducted on the diagnosis, treatment, and prevention of IGD, screening studies for IGD are still scarce. In this study, we classified gamers using multiple physiological signals to contribute to the treatment and prevention of IGD. Participating gamers were divided into three groups based on Young's Internet Addiction Test score and average game time as follows: Group A, those who rarely play games; Group B, those who enjoy and play games regularly; and Group C, those classified as having IGD. In our game-related cue-based experiment, we obtained self-reported craving scores and multiple physiological data such as electrooculogram (EOG), photoplethysmogram (PPG), and electroencephalogram (EEG) from the users while they watched neutral (natural scenery) or stimulating (gameplay) videos. By analysis of covariance (ANCOVA), 13 physiological features (vertical saccadic movement from EOG, standard deviation of N-N intervals, and PNN50 from PPG, and many EEG spectral power indicators) were determined to be significant to classify the three groups. The classification was performed using a 2-layers feedforward neural network. The fusion of three physiological signals showed the best result compared to other cases (combination of EOG and PPG or EEG only). The accuracy was 0.90 and F-1 scores were 0.93 (Group A), 0.89 (Group B), and 0.88 (Group C). However, the subjective self-reported scores did not show a significant difference among the three groups by ANCOVA analysis. The results indicate that the fusion of physiological signals can be an effective method to objectively classify gamers.

10.
Front Neurosci ; 15: 732545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803582

RESUMO

The motor imagery (MI)-based brain-computer interface (BCI) is an intuitive interface that provides control over computer applications directly from brain activity. However, it has shown poor performance compared to other BCI systems such as P300 and SSVEP BCI. Thus, this study aimed to improve MI-BCI performance by training participants in MI with the help of sensory inputs from tangible objects (i.e., hard and rough balls), with a focus on poorly performing users. The proposed method is a hybrid of training and imagery, combining motor execution and somatosensory sensation from a ball-type stimulus. Fourteen healthy participants participated in the somatosensory-motor imagery (SMI) experiments (within-subject design) involving EEG data classification with a three-class system (signaling with left hand, right hand, or right foot). In the scenario of controlling a remote robot to move it to the target point, the participants performed MI when faced with a three-way intersection. The SMI condition had a better classification performance than did the MI condition, achieving a 68.88% classification performance averaged over all participants, which was 6.59% larger than that in the MI condition (p < 0.05). In poor performers, the classification performance in SMI was 10.73% larger than in the MI condition (62.18% vs. 51.45%). However, good performers showed a slight performance decrement (0.86%) in the SMI condition compared to the MI condition (80.93% vs. 81.79%). Combining the brain signals from the motor and somatosensory cortex, the proposed hybrid MI-BCI system demonstrated improved classification performance, this phenomenon was predominant in poor performers (eight out of nine subjects). Hybrid MI-BCI systems may significantly contribute to reducing the proportion of BCI-inefficiency users and closing the performance gap with other BCI systems.

11.
Soc Cogn Affect Neurosci ; 16(9): 995-1005, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-33064824

RESUMO

Recently, the World Health Organization included 'gaming disorder' in its latest revision of the international classification of diseases (ICD-11). Despite extensive research on internet gaming disorder (IGD), few studies have addressed game-related stimuli eliciting craving, which plays an important role in addiction. Particularly, most previous studies did not consider personal preferences in games presented to subjects as stimuli. In this study, we compared neurophysiological responses elicited for favorite game (FG) videos and non-favorite game (NFG) videos. We aimed to demonstrate neurophysiological characteristics according to the game preference in the IGD group. We measured participants' electroencephalogram (EEG) while they watched FG, NFG and neutral videos. For FG videos, the parieto-occipital theta power (TPPO) were significantly increased compared with those for NFG videos (P < 0.05, paired t-test). TPPO also differed significantly between the healthy control and IGD groups only on FG videos controlling covariate (TPPO on neutral videos) (P < 0.05, analysis of covariance [ANCOVA]). And TPPO was significantly correlated to self-reported craving score only on FG videos (r = 0.334, P < 0.05). In the present study, we demonstrate that FG videos induce higher TPPO than that induced by NFG videos in the IGD group and TPPO is a reliable EEG feature associated with craving for gaming.


Assuntos
Comportamento Aditivo , Jogos de Vídeo , Fissura , Eletroencefalografia , Humanos , Transtorno de Adição à Internet
12.
Psychiatry Investig ; 13(6): 652-658, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27909457

RESUMO

OBJECTIVE: To investigate how differences in oxygen saturation between non-REM (NREM) and REM sleep in patients according to the severity of sleep apnea. METHODS: We studied 396 male patients diagnosed with simple snoring or obstructive sleep apnea syndrome (OSAS) on nocturnal polysomnography. Patients were divided into groups by the OSAS severity. We compared the average oxygen saturation between REM and NREM sleep in each group. RESULTS: In the simple snoring group, average oxygen saturation was significantly greater during REM than during NREM sleep. In the severe OSA group alone, average oxygen saturation was greater in NREM than in REM sleep. The difference of NREM-REM average oxygen saturation correlated significantly with AHI in the severe OSA group. CONCLUSION: More severe hypoxemia was seen in REM than NREM sleep in the severe OSAS group. The differential oxygen decrease between REM and NREM sleep is likely due to the differentially occurring sleep breathing events in each sleep stage according to the SDB severity. The more AHI increases in the severe OSAS patients, the more prominent the hypoxemia of REM sleep compared with NREM sleep is likely to appear. This suggests that the pressure of continuous positive airway pressure should be increased to control the hypoxemia of REM sleep in extremely severe OSAS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA