Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001596

RESUMO

Most human cancer cells harbor loss-of-function mutations in the p53 tumor suppressor gene. Genetic experiments have shown that phosphatidylinositol 5-phosphate 4-kinase α and ß (PI5P4Kα and PI5P4Kß) are essential for the development of late-onset tumors in mice with germline p53 deletion, but the mechanism underlying this acquired dependence remains unclear. PI5P4K has been previously implicated in metabolic regulation. Here, we show that inhibition of PI5P4Kα/ß kinase activity by a potent and selective small-molecule probe disrupts cell energy homeostasis, causing AMPK activation and mTORC1 inhibition in a variety of cell types. Feedback through the S6K/insulin receptor substrate (IRS) loop contributes to insulin hypersensitivity and enhanced PI3K signaling in terminally differentiated myotubes. Most significantly, the energy stress induced by PI5P4Kαß inhibition is selectively toxic toward p53-null tumor cells. The chemical probe, and the structural basis for its exquisite specificity, provide a promising platform for further development, which may lead to a novel class of diabetes and cancer drugs.


Assuntos
Neoplasias/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/genética , Quinases Proteína-Quinases Ativadas por AMP/genética , Animais , Metabolismo Energético/efeitos dos fármacos , Humanos , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Neoplasias/genética , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/ultraestrutura , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química
2.
Proc Natl Acad Sci U S A ; 117(34): 20794-20802, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32817466

RESUMO

Cis-prenyltransferase (cis-PTase) catalyzes the rate-limiting step in the synthesis of glycosyl carrier lipids required for protein glycosylation in the lumen of endoplasmic reticulum. Here, we report the crystal structure of the human NgBR/DHDDS complex, which represents an atomic resolution structure for any heterodimeric cis-PTase. The crystal structure sheds light on how NgBR stabilizes DHDDS through dimerization, participates in the enzyme's active site through its C-terminal -RXG- motif, and how phospholipids markedly stimulate cis-PTase activity. Comparison of NgBR/DHDDS with homodimeric cis-PTase structures leads to a model where the elongating isoprene chain extends beyond the enzyme's active site tunnel, and an insert within the α3 helix helps to stabilize this energetically unfavorable state to enable long-chain synthesis to occur. These data provide unique insights into how heterodimeric cis-PTases have evolved from their ancestral, homodimeric forms to fulfill their function in long-chain polyprenol synthesis.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Transferases/química , Transferases/metabolismo , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Domínio Catalítico , Cromatografia Líquida de Alta Pressão/métodos , Cristalografia por Raios X , Glicosilação , Humanos , Mutação , Domínios Proteicos , Estrutura Secundária de Proteína , Receptores de Superfície Celular/genética , Relação Estrutura-Atividade , Transferases/genética
3.
Proc Natl Acad Sci U S A ; 113(31): 8711-6, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27439870

RESUMO

The phosphatidylinositol phosphate kinase (PIPK) family of enzymes is primarily responsible for converting singly phosphorylated phosphatidylinositol derivatives to phosphatidylinositol bisphosphates. As such, these kinases are central to many signaling and membrane trafficking processes in the eukaryotic cell. The three types of phosphatidylinositol phosphate kinases are homologous in sequence but differ in catalytic activities and biological functions. Type I and type II kinases generate phosphatidylinositol 4,5-bisphosphate from phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate, respectively, whereas the type III kinase produces phosphatidylinositol 3,5-bisphosphate from phosphatidylinositol 3-phosphate. Based on crystallographic analysis of the zebrafish type I kinase PIP5Kα, we identified a structural motif unique to the kinase family that serves to recognize the monophosphate on the substrate. Our data indicate that the complex pattern of substrate recognition and phosphorylation results from the interplay between the monophosphate binding site and the specificity loop: the specificity loop functions to recognize different orientations of the inositol ring, whereas residues flanking the phosphate binding Arg244 determine whether phosphatidylinositol 3-phosphate is exclusively bound and phosphorylated at the 5-position. This work provides a thorough picture of how PIPKs achieve their exquisite substrate specificity.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , Modelos Moleculares , Fosfatos de Fosfatidilinositol/química , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
4.
Nature ; 475(7357): 528-31, 2011 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-21765428

RESUMO

The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 Å resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.


Assuntos
Proteínas Arqueais/química , Mathanococcus/química , Modelos Moleculares , Peptídeo Hidrolases/química , Cristalografia por Raios X , Proteínas de Membrana/química , Presenilina-1/química , Estrutura Terciária de Proteína
5.
J Biol Chem ; 290(10): 6419-27, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25609250

RESUMO

The GxGD proteases function to cleave protein substrates within the membrane. As these proteases contain multiple transmembrane domains typical of ion channels, we examined if GxGD proteases also function as ion channels. We tested the putative dual function by examining two archeobacterial GxGD proteases (PSH and FlaK), with known three-dimensional structures. Both are in the same GxGD family as presenilin, a protein mutated in Alzheimer Disease. Here, we demonstrate that PSH and FlaK form cation channels in lipid bilayers. A mutation that affected the enzymatic activity of FlaK rendered the channel catalytically inactive and altered the ion selectivity, indicating that the ion channel and the catalytic activities are linked. We report that the GxGD proteases, PSH and FlaK, are true "chanzymes" with interdependent ion channel and protease activity conferred by a single structural domain embedded in the membrane, supporting the proposal that higher-order proteases, including presenilin, have channel function.


Assuntos
Canais de Cálcio/química , Proteínas de Membrana/química , Peptídeo Hidrolases/química , Presenilinas/química , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Archaea/enzimologia , Canais de Cálcio/genética , Domínio Catalítico , Cristalografia por Raios X , Humanos , Bicamadas Lipídicas/química , Proteínas de Membrana/metabolismo , Camundongos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Presenilinas/metabolismo , Estrutura Terciária de Proteína
6.
J Biol Chem ; 288(23): 16645-16654, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23609444

RESUMO

Rhomboids represent an evolutionarily ancient protease family. Unlike most other proteases, they are polytopic membrane proteins and specialize in cleaving transmembrane protein substrates. The polar active site of rhomboid protease is embedded in the membrane and normally closed. For the bacterial rhomboid GlpG, it has been proposed that one of the transmembrane helices (S5) of the protease can rotate to open a lateral gate, enabling substrate to enter the protease from inside the membrane. Here, we studied the conformational change in GlpG by solving the cocrystal structure of the protease with a mechanism-based inhibitor. We also examined the lateral gating model by cross-linking S5 to a neighboring helix (S2). The crystal structure shows that inhibitor binding displaces a capping loop (L5) from the active site but causes only minor shifts in the transmembrane helices. Cross-linking S5 and S2, which not only restricts the lateral movement of S5 but also prevents substrate from passing between the two helices, does not hinder the ability of the protease to cleave a membrane protein substrate in detergent solution and in reconstituted membrane vesicles. Taken together, these data suggest that a large lateral movement of the S5 helix is not required for substrate access to the active site of rhomboid protease.


Assuntos
Membrana Celular/enzimologia , Proteínas de Ligação a DNA/química , Endopeptidases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Membrana/química , Domínio Catalítico , Membrana Celular/genética , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Estrutura Secundária de Proteína
7.
J Biol Chem ; 288(22): 15430-6, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23585569

RESUMO

Rhomboid protease was first discovered in Drosophila. Mutation of the fly gene interfered with growth factor signaling and produced a characteristic phenotype of a pointed head skeleton. The name rhomboid has since been widely used to describe a large family of related membrane proteins that have diverse biological functions but share a common catalytic core domain composed of six membrane-spanning segments. Most rhomboid proteases cleave membrane protein substrates near the N terminus of their transmembrane domains. How these proteases function within the confines of the membrane is not completely understood. Recent progress in crystallographic analysis of the Escherichia coli rhomboid protease GlpG in complex with inhibitors has provided new insights into the catalytic mechanism of the protease and its conformational change. Improved biochemical assays have also identified a substrate sequence motif that is specifically recognized by many rhomboid proteases.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Animais , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Drosophila , Proteínas de Drosophila/genética , Endopeptidases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
8.
Proc Natl Acad Sci U S A ; 108(39): 16229-34, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21930949

RESUMO

Mutations in amyloid precursor protein (APP) are associated with familial Alzheimer's disease. Recent development suggests that homo- and heterodimerization of APP and APP-like proteins (APLPs), which are enhanced by heparan sulfate binding, may play a role in signal transduction and cell adhesion. Despite efforts to model heparin binding based on known apo crystal structures, the mechanism of heparin-induced APP/APLP dimerization has not been established experimentally. Here we report the crystal structure of a complex between heparin and the E2 domain of APLP1, which harbors the conserved high affinity heparin binding site of the full-length molecule. Within the asymmetric E2:heparin complex, the polysaccharide is snugly bound inside a narrow groove between the two helical subdomains of one protein protomer. The nonreducing end of the sugar is positioned near the protein's 2-fold axis, making contacts with basic residues from the second protomer. The inability of the E2 dimer to accommodate two heparin molecules near its symmetry axis explains the observed 21 binding stoichiometry, which is confirmed by isothermal titration calorimetric experiment carried out in solution. We also show that, at high concentrations, heparin can destabilize E2 dimer, probably by forcing into the unoccupied binding site observed in the 21 complex. The binding model suggested by the crystal structure may facilitate the design of heparin mimetics that are capable of modulating APP dimerization in cells.


Assuntos
Precursor de Proteína beta-Amiloide/química , Heparina/química , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Ligação Proteica , Conformação Proteica
9.
J Biol Chem ; 287(5): 3099-107, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22130671

RESUMO

Rhomboid proteases have many important biological functions. Unlike soluble serine proteases such as chymotrypsin, the active site of rhomboid protease, which contains a Ser-His catalytic dyad, is submerged in the membrane and surrounded by membrane-spanning helices. Previous crystallographic analyses of GlpG, a bacterial rhomboid protease, and its complex with isocoumarin have provided insights into the mechanism of the membrane protease. Here, we studied the interaction of GlpG with 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate, both mechanism-based inhibitors for the serine protease, and describe the crystal structure of the covalent adduct between GlpG and diisopropyl fluorophosphonate, which mimics the oxyanion-containing tetrahedral intermediate of the hydrolytic reaction. The crystal structure confirms that the oxyanion is stabilized by the main chain amide of Ser-201 and by the side chains of His-150 and Asn-154. The phosphorylation of the catalytic Ser-201 weakens its interaction with His-254, causing the catalytic histidine to rotate away from the serine. The rotation of His-254 is accompanied by further rearrangement of the side chains of Tyr-205 and Trp-236 within the substrate-binding groove. The formation of the tetrahedral adduct is also accompanied by opening of the L5 cap and movement of transmembrane helix S5 toward S6 in a direction different from that predicted by the lateral gating model. Combining the new structural data with those on the isocoumarin complex sheds further light on the plasticity of the active site of rhomboid membrane protease.


Assuntos
Proteínas de Bactérias/química , Cumarínicos/química , Isoflurofato/química , Peptídeo Hidrolases/química , Inibidores de Proteases/química , Providencia/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Cristalografia por Raios X , Isocumarinas , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
10.
Biochemistry ; 51(18): 3723-31, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22515733

RESUMO

Rhomboid protease conducts proteolysis inside the hydrophobic environment of the membrane. The conformational flexibility of the protease is essential for the enzyme mechanism, but the nature of this flexibility is not completely understood. Here we describe the crystal structure of rhomboid protease GlpG in complex with a phosphonofluoridate inhibitor, which is covalently bonded to the catalytic serine and extends into the S' side of the substrate binding cleft. Inhibitor binding causes subtle but extensive changes in the membrane protease. Many transmembrane helices tilt and shift positions, and the gap between S2 and S5 is slightly widened so that the inhibitor can bind between them. The side chain of Phe-245 from a loop (L5) that acts as a cap rotates and uncovers the opening of the substrate binding cleft to the lipid bilayer. A concurrent turn of the polypeptide backbone at Phe-245 moves the rest of the cap and exposes the catalytic serine to the aqueous solution. This study, together with earlier crystallographic investigation of smaller inhibitors, suggests a simple model for explaining substrate binding to rhomboid protease.


Assuntos
Alanina/análogos & derivados , Proteínas de Ligação a DNA/química , Endopeptidases/química , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Compostos Organofosforados/metabolismo , Inibidores de Proteases/metabolismo , Conformação Proteica/efeitos dos fármacos , Alanina/metabolismo , Alanina/farmacologia , Sítios de Ligação , Catálise , Cristalização , Cristalografia por Raios X , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Modelos Moleculares , Compostos Organofosforados/farmacologia , Estrutura Terciária de Proteína , Serina/metabolismo
11.
J Biol Chem ; 286(34): 29748-57, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21715329

RESUMO

Missense mutations in the amyloid precursor protein (APP) gene can cause familial Alzheimer disease. It is thought that APP and APP-like proteins (APLPs) may play a role in adhesion and signal transduction because their ectodomains interact with components of the extracellular matrix. Heparin binding induces dimerization of APP and APLPs. To help explain how these proteins interact with heparin, we have determined the crystal structure of the E2 domain of APLP1 in complex with sucrose octasulfate (SOS). A total of three SOS molecules are bound to the E2 dimer. Two SOSs are bound inside a narrow intersubdomain groove, and the third SOS is bound near the two-fold axis of the protein. Mutational analyses show that most residues interacting with SOS also contribute to heparin binding, although in varying degrees; a deep pocket, defined by His-376, Lys-422, and Arg-429, and an interfacial site between Lys-314 and its symmetry mate are most important in the binding of the negatively charged polysaccharide. Comparison with a lower resolution APP structure shows that all key heparin binding residues are conserved and identically positioned, suggesting that APLP1 and APP may bind heparin similarly. In transfected HEK-293 cells, mutating residues responsible for heparin binding causes little change in the proteolysis of APP by the secretases. However, mutating a pair of conserved basic residues (equivalent to Arg-414 and Arg-415 of APLP1) immediately adjacent to the heparin binding site affects both the maturation and the processing of APP.


Assuntos
Precursor de Proteína beta-Amiloide/química , Substituição de Aminoácidos , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Multimerização Proteica , Estrutura Terciária de Proteína
12.
Nature ; 444(7116): 179-80, 2006 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17051161

RESUMO

Escherichia coli GlpG is an integral membrane protein that belongs to the widespread rhomboid protease family. Rhomboid proteases, like site-2 protease (S2P) and gamma-secretase, are unique in that they cleave the transmembrane domain of other membrane proteins. Here we describe the 2.1 A resolution crystal structure of the GlpG core domain. This structure contains six transmembrane segments. Residues previously shown to be involved in catalysis, including a Ser-His dyad, and several water molecules are found at the protein interior at a depth below the membrane surface. This putative active site is accessible by substrate through a large 'V-shaped' opening that faces laterally towards the lipid, but is blocked by a half-submerged loop structure. These observations indicate that, in intramembrane proteolysis, the scission of peptide bonds takes place within the hydrophobic environment of the membrane bilayer. The crystal structure also suggests a gating mechanism for GlpG that controls substrate access to its hydrophilic active site.


Assuntos
Membrana Celular/enzimologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/classificação , Endopeptidases/química , Endopeptidases/classificação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/classificação , Escherichia coli/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/classificação , Motivos de Aminoácidos , Sítios de Ligação , Catálise , Cristalização , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/metabolismo , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Especificidade por Substrato , Água/química , Água/metabolismo
13.
Biochemistry ; 50(24): 5453-64, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21574595

RESUMO

Amyloid precursor protein (APP) is genetically linked to Alzheimer's disease. APP is a type I membrane protein, and its oligomeric structure is potentially important because this property may play a role in its function or affect the processing of the precursor by the secretases to generate amyloid ß-peptide. Several independent studies have shown that APP can form dimers in the cell, but how it dimerizes remains controversial. At least three regions of the precursor, including a centrally located and conserved domain called E2, have been proposed to contribute to dimerization. Here we report two new crystal structures of E2, one from APP and the other from APLP1, a mammalian APP homologue. Comparison with an earlier APP structure, which was determined in a different space group, shows that the E2 domains share a conserved and antiparallel mode of dimerization. Biophysical measurements in solution show that heparin binding induces E2 dimerization. The 2.1 Å resolution electron density map also reveals phosphate ions that are bound to the protein surface. Mutational analysis shows that protein residues interacting with the phosphate ions are also involved in heparin binding. The locations of two of these residues, Arg-369 and His-433, at the dimeric interface suggest a mechanism for heparin-induced protein dimerization.


Assuntos
Precursor de Proteína beta-Amiloide/química , Substituição de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Dimerização , Heparina/metabolismo , Humanos , Técnicas In Vitro , Modelos Moleculares , Fosfatos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática
14.
J Biol Chem ; 285(3): 2165-73, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19906646

RESUMO

The amyloid beta-peptide deposit found in the brain tissue of patients with Alzheimer disease is derived from a large heparin-binding protein precursor APP. The biological function of APP and its homologs is not precisely known. Here we report the x-ray structure of the E2 domain of APL-1, an APP homolog in Caenorhabditis elegans, and compare it to the human APP structure. We also describe the structure of APL-1 E2 in complex with sucrose octasulfate, a highly negatively charged disaccharide, which reveals an unexpected binding pocket between the two halves of E2. Based on the crystal structure, we are able to map, using site-directed mutagenesis, a surface groove on E2 to which heparin may bind. Our biochemical data also indicate that the affinity of E2 for heparin is influenced by pH: at pH 5, the binding appears to be much stronger than that at neutral pH. This property is likely caused by histidine residues in the vicinity of the mapped heparin binding site and could be important for the proposed adhesive function of APL-1.


Assuntos
Precursor de Proteína beta-Amiloide/química , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Heparina/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Caenorhabditis elegans/genética , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Estabilidade Proteica , Estrutura Terciária de Proteína , Soluções , Sacarose/análogos & derivados , Sacarose/metabolismo
15.
Curr Opin Struct Biol ; 17(4): 405-11, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17714936

RESUMO

Intramembrane proteases are present in most organisms, and are used by cells to send signal across membranes, to activate growth factors, and to accomplish many other tasks that are beyond the capability of their soluble cousins. These enzymes specialize in cleaving peptide bonds that are normally embedded in cell membranes. They contain multiple membrane-spanning segments, and their catalytic residues are often found within these hydrophobic domains. In the past year, a number of important papers have been published that began to address the structural features of these membrane proteins by X-ray crystallography, electron microscopy, and biochemical methods, including the first report of an intramembrane protease crystal structure, that of Escherichia coli GlpG. Taken together, these studies started to reveal patterns of how intramembrane proteases are constructed, how waters are supplied to the membrane-embedded active site, and how membrane protein substrates interact with them.


Assuntos
Proteínas de Membrana/química , Peptídeo Hidrolases/química , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Estrutura Terciária de Proteína , Água/química , Água/metabolismo
16.
Sci Rep ; 7(1): 10037, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855547

RESUMO

Tylophorine analogs have been shown to exhibit diverse activities against cancer, inflammation, arthritis, and lupus in vivo. In this study, we demonstrated that two tylophorine analogs, DCB-3503 and rac-cryptopleurine, exhibit potent inhibitory activity against hepatitis C virus (HCV) replication in genotype 1b Con 1 isolate. The inhibition of HCV replication is at least partially mediated through cellular heat shock cognate protein 70 (Hsc70). Hsc70 associates with the HCV replication complex by primarily binding to the poly U/UC motifs in HCV RNA. The interaction of DCB-3503 and rac-cryptopleurine with Hsc70 promotes the ATP hydrolysis activity of Hsc70 in the presence of the 3' poly U/UC motif of HCV RNA. Regulating the ATPase activity of Hsc70 may be one of the mechanisms by which tylophorine analogs inhibit HCV replication. This study demonstrates the novel anti-HCV activity of tylophorine analogs. Our results also highlight the importance of Hsc70 in HCV replication.


Assuntos
Alcaloides/farmacologia , Sítio Alostérico , Proteínas de Choque Térmico HSC70/metabolismo , Hepacivirus/fisiologia , Indolizinas/farmacologia , Fenantrenos/farmacologia , Replicação Viral/efeitos dos fármacos , Alcaloides/química , Regulação Alostérica , Proteínas de Choque Térmico HSC70/química , Humanos , Indolizinas/química , Motivos de Nucleotídeos , Fenantrenos/química , Ligação Proteica , RNA Viral/química , RNA Viral/metabolismo
17.
Nat Commun ; 6: 8205, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26365782

RESUMO

Type I phosphatidylinositol phosphate kinase (PIP5K1) phosphorylates the head group of phosphatidylinositol 4-phosphate (PtdIns4P) to generate PtdIns4,5P2, which plays important roles in a wide range of cellular functions including Wnt signalling. However, the lack of its structural information has hindered the understanding of its regulation. Here we report the crystal structure of the catalytic domain of zebrafish PIP5K1A at 3.3 Å resolution. This molecule forms a side-to-side dimer. Mutagenesis study of PIP5K1A reveals two adjacent interfaces for the dimerization and interaction with the DIX domain of the Wnt signalling molecule dishevelled. Although these interfaces are located distally to the catalytic/substrate-binding site, binding to these interfaces either through dimerization or the interaction with DIX stimulates PIP5K1 catalytic activity. DIX binding additionally enhances PIP5K1 substrate binding. Thus, this study elucidates regulatory mechanisms for this lipid kinase and provides a paradigm for the understanding of PIP5K1 regulation by their interacting molecules.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dimerização , Fosfoproteínas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Sítios de Ligação , Calorimetria , Domínio Catalítico , Dicroísmo Circular , Cristalização , Cristalografia por Raios X , Proteínas Desgrenhadas , Células HEK293 , Humanos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Estrutura Terciária de Proteína , Peixe-Zebra
18.
Semin Cell Dev Biol ; 20(2): 240-50, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19059492

RESUMO

Many functionally important membrane proteins are cleaved within their transmembrane helices to become activated. This unusual reaction is catalyzed by a group of highly specialized and membrane-bound proteases. Here I briefly summarize current knowledge about their structure and mechanism, with a focus on the rhomboid family. It has now become clear that rhomboid protease can cleave substrates not only within transmembrane domains, but also in the solvent-exposed juxtamembrane region. This dual specificity seems possible because the protease active site is positioned in a shallow pocket that can directly open to aqueous solution through the movement of a flexible capping loop. The narrow membrane-spanning region of the protease suggests a possible mechanism for accessing scissile bonds that are located near the end of substrate transmembrane helices. Similar principles may apply to the metalloprotease family, where a crystal structure has also become available. Although how the GxGD proteases work is still less clear, recent results indicate that presenilin also appears to clip substrate from the end of transmembrane helices.


Assuntos
Receptores ErbB/classificação , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Serina Endopeptidases/química , Serina Endopeptidases/fisiologia , Animais , Humanos , Metaloproteases/química , Metaloproteases/fisiologia , Modelos Biológicos , Termodinâmica
19.
Proc Natl Acad Sci U S A ; 104(7): 2098-102, 2007 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-17277078

RESUMO

The active sites of intramembrane proteases are positioned in the lipid bilayer to facilitate peptide bond hydrolysis in the membrane. Previous crystallographic analysis of Escherichia coli GlpG, an intramembrane protease of the rhomboid family, has revealed an internal and hydrophilic active site in an apparently closed conformation. Here we describe the crystal structure of GlpG in a more open conformation, where the capping loop L5 has been lifted, exposing the previously buried and catalytically essential Ser-201 to outside aqueous solution. A water molecule now moves into the putative oxyanion hole that is constituted of a main-chain amide (Ser-201) and two conserved side chains (His-150 and Asn-154). The loop movement also destabilizes a hydrophobic side chain (Phe-245) previously buried between transmembrane helices S2 and S5 and creates a side portal from the lipid to protease active site. These results provide insights into the conformational plasticity of GlpG to accommodate substrate binding and catalysis and into the chirality of the reaction intermediate.


Assuntos
Proteínas de Ligação a DNA/química , Endopeptidases/química , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Aminoácidos , Sítios de Ligação , Catálise , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Eletricidade Estática , Água/química
20.
J Mol Biol ; 374(4): 1104-13, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17976648

RESUMO

Intramembrane proteases are important enzymes in biology. The recently solved crystal structures of rhomboid protease GlpG have provided useful insights into the mechanism of these membrane proteins. Besides revealing an internal water-filled cavity that harbored the Ser-His catalytic dyad, the crystal structure identified a novel structural domain (L1 loop) that lies on the side of the transmembrane helices. Here, using site-directed mutagenesis, we confirmed that the L1 loop is partially embedded in the membrane, and showed that alanine substitution of a highly preferred tryptophan (Trp136) at the distal tip of the L1 loop near the lipid:water interface reduced GlpG proteolytic activity. Crystallographic analysis showed that W136A mutation did not modify the structure of the protease. Instead, the polarity for a small and lipid-exposed protein surface at the site of the mutation has changed. The crystal structure, now refined at 1.7 A resolution, also clearly defined a 20-A-wide hydrophobic belt around the protease, which likely corresponded to the thickness of the compressed membrane bilayer around the protein. This improved structural model predicts that all critical elements of the catalysis, including the catalytic serine and the L5 cap, need to be positioned within a few angstroms of the membrane surface, and may explain why the protease activity is sensitive to changes in the protein:lipid interaction. Based on these findings, we propose a model where the end of the substrate transmembrane helix first partitions out of the hydrophobic core region of the membrane before it bends into the protease active site for cleavage.


Assuntos
Membrana Celular/enzimologia , Proteínas de Ligação a DNA/química , Endopeptidases/química , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Sequência de Aminoácidos , Proteínas de Ligação a DNA/genética , Endopeptidases/genética , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA