Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928350

RESUMO

The COVID-19 pandemic highlighted the need for a rapid, convenient, and scalable diagnostic method for detecting a novel pathogen amidst a global pandemic. While command-line interface tools offer automation for SARS-CoV-2 Oxford Nanopore Technology sequencing data analysis, they are inapplicable to users with limited programming skills. A solution is to establish such automated workflows within a graphical user interface software. We developed two workflows in the software Geneious Prime 2022.1.1, adapted for data obtained from the Midnight and Artic's nCoV-2019 sequencing protocols. Both workflows perform trimming, read mapping, consensus generation, and annotation on SARS-CoV-2 Nanopore sequencing data. Additionally, one workflow includes phylogenetic assignment using the bioinformatic tools pangolin and Nextclade as plugins. The basic workflow was validated in 2020, adhering to the requirements of the European Centre for Disease Prevention and Control for SARS-CoV-2 sequencing and analysis. The enhanced workflow, providing phylogenetic assignment, underwent validation at Uppsala University Hospital by analysing 96 clinical samples. It provided accurate diagnoses matching the original results of the basic workflow while also reducing manual clicks and analysis time. These bioinformatic workflows streamline SARS-CoV-2 Nanopore data analysis in Geneious Prime, saving time and manual work for operators lacking programming knowledge.


Assuntos
COVID-19 , Biologia Computacional , Pandemias , Filogenia , SARS-CoV-2 , Software , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Biologia Computacional/métodos , Fluxo de Trabalho , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Interface Usuário-Computador , Sequenciamento por Nanoporos/métodos
2.
Microorganisms ; 11(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37894075

RESUMO

Monoclonal antibodies (mAbs) are an important treatment option for COVID-19 caused by SARS-CoV-2, especially in immunosuppressed patients. However, this treatment option can become ineffective due to mutations in the SARS-CoV-2 genome, mainly in the receptor binding domain (RBD) of the spike (S) protein. In the present study, 7950 SARS-CoV-2 positive samples from the Uppsala and Örebro regions of central Sweden, collected between March 2022 and May 2023, were whole-genome sequenced using amplicon-based sequencing methods on Oxford Nanopore GridION, Illumina MiSeq, Illumina HiSeq, or MGI DNBSEQ-G400 instruments. Pango lineages were determined and all single nucleotide polymorphism (SNP) mutations that occurred in these samples were identified. We found that the dominant sublineages changed over time, and mutations conferring resistance to currently available mAbs became common. Notable ones are R346T and K444T mutations in the RBD that confer significant resistance against tixagevimab and cilgavimab mAbs. Further, mutations conferring a high-fold resistance to bebtelovimab, such as the K444T and V445P mutations, were also observed in the samples. This study highlights that resistance mutations have over time rendered currently available mAbs ineffective against SARS-CoV-2 in most patients. Therefore, there is a need for continued surveillance of resistance mutations and the development of new mAbs that target more conserved regions of the RBD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA