Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 595(10): 3181-3202, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28194788

RESUMO

KEY POINTS: ß-Adrenergic stimulation enhances Ca2+ entry via L-type CaV 1.2 channels, causing stronger contraction of cardiac muscle cells. The signalling pathway involves activation of protein kinase A (PKA), but the molecular details of PKA regulation of CaV 1.2 remain controversial despite extensive research. We show that PKA regulation of CaV 1.2 can be reconstituted in Xenopus oocytes when the distal C-terminus (dCT) of the main subunit, α1C , is truncated. The PKA upregulation of CaV 1.2 does not require key factors previously implicated in this mechanism: the clipped dCT, the A kinase-anchoring protein 15 (AKAP15), the phosphorylation sites S1700, T1704 and S1928, or the ß subunit of CaV 1.2. The gating element within the initial segment of the N-terminus of the cardiac isoform of α1C is essential for the PKA effect. We propose that the regulation described here is one of two or several mechanisms that jointly mediate the PKA regulation of CaV 1.2 in the heart. ABSTRACT: ß-Adrenergic stimulation enhances Ca2+ currents via L-type, voltage-gated CaV 1.2 channels, strengthening cardiac contraction. The signalling via ß-adrenergic receptors (ß-ARs) involves elevation of cyclic AMP (cAMP) levels and activation of protein kinase A (PKA). However, how PKA affects the channel remains controversial. Recent studies in heterologous systems and genetically engineered mice stress the importance of the post-translational proteolytic truncation of the distal C-terminus (dCT) of the main (α1C ) subunit. Here, we successfully reconstituted the cAMP/PKA regulation of the dCT-truncated CaV 1.2 in Xenopus oocytes, which previously failed with the non-truncated α1C . cAMP and the purified catalytic subunit of PKA, PKA-CS, injected into intact oocytes, enhanced CaV 1.2 currents by ∼40% (rabbit α1C ) to ∼130% (mouse α1C ). PKA blockers were used to confirm specificity and the need for dissociation of the PKA holoenzyme. The regulation persisted in the absence of the clipped dCT (as a separate protein), the A kinase-anchoring protein AKAP15, and the phosphorylation sites S1700 and T1704, previously proposed as essential for the PKA effect. The CaV ß2b subunit was not involved, as suggested by extensive mutagenesis. Using deletion/chimeric mutagenesis, we have identified the initial segment of the cardiac long-N-terminal isoform of α1C as a previously unrecognized essential element involved in PKA regulation. We propose that the observed regulation, that exclusively involves the α1C subunit, is one of several mechanisms underlying the overall PKA action on CaV 1.2 in the heart. We hypothesize that PKA is acting on CaV 1.2, in part, by affecting a structural 'scaffold' comprising the interacting cytosolic N- and C-termini of α1C .


Assuntos
Canais de Cálcio Tipo L/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Oócitos/fisiologia , Subunidades Proteicas/fisiologia , Animais , AMP Cíclico/fisiologia , Xenopus laevis
2.
J Vasc Res ; 54(3): 131-142, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28468000

RESUMO

AIM: Vascular remodeling following injury substantially accounts for restenosis and adverse clinical outcomes. In this study, we investigated the role of the giant scaffold protein Ahnak1 in vascular healing after endothelial denudation of the murine femoral artery. METHODS: The spatiotemporal expression pattern of Ahnak1 and Ahnak2 was examined using specific antibodies and real-time quantitative PCR. Following wire-mediated endothelial injury of Ahnak1-deficient mice and wild-type (WT) littermates, the processes of vascular healing were analyzed. RESULTS: Ahnak1 and Ahnak2 showed a mutually exclusive vascular expression pattern, with Ahnak1 being expressed in the endothelium and Ahnak2 in the medial cells in naïve WT arteries. After injury, a marked increase of Ahnak1- and Ahnak2-positive cells at the lesion site became evident. Both proteins showed a strong upregulation in neointimal cells 14 days after injury. Ahnak1-deficient mice showed delayed vascular healing and dramatically impaired re-endothelialization that resulted in prolonged adverse vascular remodeling, when compared to the WT littermates. CONCLUSION: The large scaffold and adaptor proteins Ahnak1 and Ahnak2 exhibit differential expression patterns and functions in naïve and injured arteries. Ahnak1 plays a nonredundant protective role in vascular healing.


Assuntos
Artéria Femoral/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Remodelação Vascular , Lesões do Sistema Vascular/metabolismo , Cicatrização , Animais , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Artéria Femoral/lesões , Artéria Femoral/patologia , Genótipo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neointima , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Fenótipo , Reepitelização , Fatores de Tempo , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia
3.
Biochem Biophys Res Commun ; 450(1): 464-9, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24911555

RESUMO

The essential myosin light chain (ELC) is involved in modulation of force generation of myosin motors and cardiac contraction, while its mechanism of action remains elusive. We hypothesized that ELC could modulate myosin stiffness which subsequently determines its force production and cardiac contraction. Therefore, we generated heterologous transgenic mouse (TgM) strains with cardiomyocyte-specific expression of ELC with human ventricular ELC (hVLC-1; TgM(hVLC-1)) or E56G-mutated hVLC-1 (hVLC-1(E56G); TgM(E56G)). hVLC-1 or hVLC-1(E56G) expression in TgM was around 39% and 41%, respectively of total VLC-1. Laser trap and in vitro motility assays showed that stiffness and actin sliding velocity of myosin with hVLC-1 prepared from TgM(hVLC-1) (1.67 pN/nm and 2.3 µm/s, respectively) were significantly higher than myosin with hVLC-1(E56G) prepared from TgM(E56G) (1.25 pN/nm and 1.7 µm/s, respectively) or myosin with mouse VLC-1 (mVLC-1) prepared from C57/BL6 (1.41 pN/nm and 1.5 µm/s, respectively). Maximal left ventricular pressure development of isolated perfused hearts in vitro prepared from TgM(hVLC-1) (80.0 mmHg) were significantly higher than hearts from TgM(E56G) (66.2 mmHg) or C57/BL6 (59.3±3.9 mmHg). These findings show that ELCs decreased myosin stiffness, in vitro motility, and thereby cardiac functions in the order hVLC-1>hVLC-1(E56G)≈mVLC-1. They also suggest a molecular pathomechanism of hypertrophic cardiomyopathy caused by hVLC-1 mutations.


Assuntos
Coração/fisiologia , Contração Miocárdica/fisiologia , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Animais , Módulo de Elasticidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/fisiologia , Proteínas Motores Moleculares/ultraestrutura , Cadeias Leves de Miosina/ultraestrutura , Relação Estrutura-Atividade , Resistência à Tração/fisiologia
4.
J Biol Chem ; 286(11): 9079-96, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21177871

RESUMO

A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating ß-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Sistemas do Segundo Mensageiro/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Animais , Doença Crônica , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Masculino , Contração Miocárdica/efeitos dos fármacos , Ratos , Ratos Endogâmicos WKY , Sistemas do Segundo Mensageiro/efeitos dos fármacos
5.
J Cell Biochem ; 113(3): 934-45, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22371973

RESUMO

Zonula occludens protein 1 (ZO-1) is a ubiquitous scaffolding protein, but it is unknown why it functions in very different cellular contacts. We hypothesized that a specific segment, the unique hinge region, can be bound by very different regulatory proteins. Using surface plasmon resonance spectroscopy and binding assays to peptide libraries, we show, for the first time, that the hinge region directly interacts with disparate signal elements such as G-proteins alpha 12 and alpha i2, the regulator of G-protein signaling 5, multifunctional signaling protein ahnak1, and L-type Ca2+-channel beta-2-subunit. The novel binding proteins specifically bound to a coiled coil-helix predicted in the hinge region of ZO-. The interactions were modulated by phosphorylation in the hinge helix. Activation of the G-proteins influenced their association to ZO-1. In colon cells, G alpha i2 and ZO-1 were associated, as shown by coimmunoprecipitation. After cotransfection in kidney cells, G alpha i2 barely colocalized with ZO-1; the colocalization coefficient was significantly increased when epinephrine activated G-protein signaling. In conclusion, proteins with different regulatory potential adhere to and influence cellular functions of ZO-proteins, and the interactions can be modulated via its hinge region and/or the binding proteins.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Células CACO-2 , Membrana Celular/química , Células Epiteliais/química , Células Epiteliais/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/análise , Proteínas de Membrana/química , Fosfoproteínas/análise , Fosfoproteínas/química , Proteínas RGS/metabolismo , Proteína da Zônula de Oclusão-1
6.
Biochem Biophys Res Commun ; 421(2): 184-9, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22497893

RESUMO

Ahnak1 has been implicated in protein kinase A (PKA)-mediated control of cardiac L-type Ca(2+) channels (Cav1.2) through its interaction with the Cavß(2) regulatory channel subunit. Here we corroborate this functional linkage by immunocytochemistry on isolated cardiomyocytes showing co-localization of ahnak1 and Cavß(2) in the T-tubule system. In previous studies Cavß(2) attachment sites which impacted the channel's PKA regulation have been located to ahnak1's proximal C-terminus (ahnak1(4889-5535), ahnak1(5462-5535)). In this study, we mapped the ahnak1-interacting regions in Cavß(2) and investigated whether Cavß(2) phosphorylation affects its binding behavior. In vitro binding assays with Cavß(2) truncation mutants and ahnak1(4889-5535) revealed that the core region of Cavß(2) consisting of Src-homology 3 (SH3), HOOK, and guanylate kinase (GK) domains was important for ahnak1 interaction while the C- and N-terminal regions were dispensable. Furthermore, Ser-296 in the GK domain of Cavß(2) was identified as novel PKA phosphorylation site by mass spectrometry. Surface plasmon resonance (SPR) binding analysis showed that Ser-296 phosphorylation did not affect the high affinity interaction (K(D)≈35 nM) between Cavß(2) and the α(1C) I-II linker, but affected ahnak1 interaction in a complex manner. SPR experiments with ahnak1(5462-5535) revealed that PKA phosphorylation of Cavß(2) significantly increased the binding affinity and, in parallel, it reduced the binding capacity. Intriguingly, the phosphorylation mimic substitution Glu-296 fully reproduced both effects, increased the affinity by ≈2.4-fold and reduced the capacity by ≈60%. Our results are indicative for the release of a population of low affinity interaction sites following Cavß(2) phosphorylation on Ser-296. We propose that this phosphorylation event is one mechanism underlying ahnak1's modulator function on Cav1.2 channel activity.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Neoplasias/metabolismo , Serina/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Camundongos , Camundongos Endogâmicos , Fosforilação , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Serina/genética
7.
J Muscle Res Cell Motil ; 32(4-5): 271-80, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22057634

RESUMO

Ahnak1 is a giant, ubiquitously expressed, plasma membrane support protein whose function in skeletal muscle is largely unknown. Therefore, we investigated whether ahnak would be influenced by alterations of the sarcolemma exemplified by dysferlin mutations known to render the sarcolemma vulnerable or by mutations in calpain3, a protease known to cleave ahnak. Human muscle biopsy specimens obtained from patients with limb girdle muscular dystrophy (LGMD) caused by mutations in dysferlin (LGMD2B) and calpain3 (LGMD2A) were investigated for ahnak expression and localization. We found that ahnak1 has lost its sarcolemmal localization in LGMD2B but not in LGMD2A. Instead ahnak1 appeared in muscle connective tissue surrounding the extracellular site of the muscle fiber in both muscular dystrophies. The entire giant ahnak1 molecule was present outside the muscle fiber and did only partially colocalize with CD45-positive immune cell infiltration and the extracelluar matrix proteins fibronectin and collagenVI. Further, vesicles shedded in response to Ca(2+) by primary human myotubes were purified and their protein content was analysed. Ahnak1 was prominently present in these vesicles. Electron microscopy revealed a homogenous population of vesicles with a diameter of about 150 nm. This is the first study demonstrating vesicle release from human myotubes that may be one mechanism underlying abnormally localized ahnak1. Taken together, our results define ahnak1 in muscle connective tissue as a novel feature of two genetically distinct muscular dystrophies that might contribute to disease pathology.


Assuntos
Tecido Conjuntivo/ultraestrutura , Proteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Proteínas de Neoplasias/metabolismo , Sarcolema/ultraestrutura , Vesículas Transportadoras/ultraestrutura , Calpaína/genética , Calpaína/metabolismo , Estudos de Casos e Controles , Disferlina , Homozigoto , Humanos , Imuno-Histoquímica , Proteínas de Membrana/genética , Microscopia Eletrônica , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Vesículas Transportadoras/metabolismo
8.
J Muscle Res Cell Motil ; 32(4-5): 281-90, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22038483

RESUMO

Ahnak1 has been implicated in the beta-adrenergic regulation of the cardiac L-type Ca(2+) channel current (I (CaL)) by its binding to the regulatory Cavß(2) subunit. In this study, we addressed the question whether ahnak1/Cavß(2) interactions are essential or redundant for beta-adrenergic stimulation of I (CaL). Three naturally occurring ahnak1 variants (V5075 M, G5242R, and T5796 M) identified by genetic screening of cardiomyopathy patients did essentially not influence the in vitro Cavß(2) interaction as assessed by recombinant proteins. But, we observed a robust increase in Cavß(2) binding by mutating Ala at position 4984 to Pro which creates a PxxP consensus motif in the ahnak1 protein fragment. Surface plasmon resonance measurements revealed that this mutation introduced an additional Cavß(2) binding site. The functionality of A4984P was supported by the specific action of the Pro-containing ahnak1-derived peptide (P4984) in beta-adrenergic regulation of I (CaL). Patch clamp recordings on cardiomyocytes showed that intracellular perfusion of P4984 markedly reduced I (CaL) response to the beta-adrenergic agonist, isoprenaline, while the Ala-containing counterpart failed to affect I (CaL). Interestingly, I (CaL) of ahnak1-deficient cardiomyocytes was not affected by peptide application. Moreover, I (CaL) of ahnak1-deficient cardiomyocytes showed intact beta-adrenergic responsiveness. Similarly isolated ahnak1-deficient mouse hearts responded normally to adrenergic challenge. Our results indicate that ahnak1 is not essential for beta-adrenergic up-regulation of I (CaL) and cardiac contractility in mice. But, tuning ahnak1/Cavß(2) interaction provides a tool for modulating the beta-adrenergic response of I (CaL).


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteínas de Membrana/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas de Neoplasias/metabolismo , Agonistas Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Motivos de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/fisiologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Estudos de Casos e Controles , Humanos , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Proteínas de Neoplasias/genética , Técnicas de Patch-Clamp , Polimorfismo de Nucleotídeo Único , Receptores Adrenérgicos beta/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
Pflugers Arch ; 460(4): 719-30, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20607281

RESUMO

Ahnak1, a giant 700 kDa protein, has been implicated in Ca(2+) signalling in various cells. Previous work suggested that the interaction between ahnak1 and Cavbeta(2) subunit plays a role in L-type Ca(2+) current (I (CaL)) regulation. Here, we performed structure-function studies with the most C-terminal domain of ahnak1 (188 amino acids) containing a PxxP consensus motif (designated as 188-PSTP) using ventricular cardiomyocytes isolated from rats, wild-type (WT) mice and ahnak1-deficient mice. In vitro binding studies revealed that 188-PSTP conferred high-affinity binding to Cavbeta(2) (K (d) approximately 60 nM). Replacement of proline residues by alanines (188-ASTA) decreased Cavbeta(2) affinity about 20-fold. Both 188-PSTP and 188-ASTA were functional in ahnak1-expressing rat and mouse cardiomyocytes during whole-cell patch clamp. Upon intracellular application, they increased the net Ca(2+) influx by enhancing I (CaL) density and/or increasing I (CaL) inactivation time course without altering voltage dependency. Specifically, 188-ASTA, which failed to affect I (CaL) density, markedly slowed I (CaL) inactivation resulting in a 50-70% increase in transported Ca(2+) during a 0 mV depolarising pulse. Both ahnak1 fragments also slowed current inactivation with Ba(2+) as charge carrier. By contrast, neither 188-PSTP nor 188-ASTA affected any I (CaL) characteristics in ahnak1-deficient mouse cardiomyocytes. Our results indicate that the presence of endogenous ahnak1 is required for tuning the voltage-dependent component of I (CaL) inactivation by ahnak1 fragments. We suggest that ahnak1 modulates the accessibility of molecular determinants in Cavbeta(2) and/or scaffolds selectively different beta-subunit isoforms in the heart.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Neoplasias/metabolismo , Motivos de Aminoácidos , Animais , Western Blotting , Sinalização do Cálcio/fisiologia , Masculino , Proteínas de Membrana/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas de Neoplasias/química , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
10.
Biochem Biophys Res Commun ; 401(1): 143-8, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20833135

RESUMO

The AHNAK scaffold PDZ-protein family is implicated in various cellular processes including membrane repair; however, AHNAK function and subcellular localization in skeletal muscle are unclear. We used specific AHNAK1 and AHNAK2 antibodies to analyzed the detailed localization of both proteins in mouse skeletal muscle. Co-localization of AHNAK1 and AHNAK2 with vinculin clearly demonstrates that both proteins are components of the costameric network. In contrast, no AHNAK expression was detected in the T-tubule system. A laser wounding assay with AHNAK1-deficient fibers suggests that AHNAK1 is not involved in membrane repair. Using atomic force microscopy (AFM), we observed a significantly higher transverse stiffness of AHNAK1⁻/⁻ fibers. These findings suggest novel functions of AHNAK proteins in skeletal muscle.


Assuntos
Módulo de Elasticidade , Proteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/química , Proteínas de Neoplasias/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Animais , Proteínas do Citoesqueleto , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos , Microscopia de Força Atômica , Fibras Musculares Esqueléticas/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética
11.
Biochem Biophys Res Commun ; 396(4): 939-43, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20460111

RESUMO

The denuded IQ2 domain, i.e. myosin heavy chain not associated with regulatory light chains, exerts an inhibitory effect on myosin ATPase activity. In this study, we elaborated a structural explanation for this auto-inhibitory effect of IQ2 on myosin function. We employed analytical ultracentrifugation, circular dichroism, and surface plasmon resonance spectroscopy to investigate structural and functional properties of a myosin heavy chain (MYH) head-rod fragment aa664-915. MYH(664-915) was monomeric, adopted a closed shape, and bound essential myosin light chains (HIS-MLC-1) with low affinity to IQ1. Deletion of IQ2, however opened MYH(664-915). Four amino acids present in IQ2 could be identified to be responsible for this auto-inhibitory structural effect: alanine mutagenesis of I814, Q815, R819, and W827 stretched MYH(664-915) and increased 30-fold the binding affinity of HIS-MLC-1 to IQ1. In this study we show, that denuded IQ2 favours a closed conformation of myosin with a low HIS-MLC-1 binding affinity. The collapsed structure of myosin with denuded IQ2 could explain the auto-inhibitory effects of IQ2 on enzymatic activity of myosin.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Cadeias Pesadas de Miosina/química , Miosina Tipo II/antagonistas & inibidores , Animais , Dicroísmo Circular , Cadeias Pesadas de Miosina/genética , Cadeias Leves de Miosina/química , Estrutura Terciária de Proteína/genética , Ratos , Deleção de Sequência , Ressonância de Plasmônio de Superfície , Ultracentrifugação
12.
Mol Cell Biochem ; 333(1-2): 233-42, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19685172

RESUMO

Hypertension is a major cause for hypertrophic remodelling of the myocardium. Agonistic autoantibodies to extracellular loops of the alpha(1)-adrenergic receptor (alpha(1)-AR) have been identified in patients with arterial hypertension. However, intracellular reactions elicited by these agonistic antibodies remain elusive. An anti-peptide antibody (anti-alpha(1)) was generated against the second extracellular loop of the alpha(1)-AR that bound to its peptide epitope with high affinity (K (D) approximately 50 nM). We studied anti-alpha(1) effects on intracellular calcium (Ca(i)), a key factor in cellular remodelling, and receptor-mediated cardiac protein phosphorylation. Anti-alpha(1) induced pronounced but transient increases in Ca(i) in CHO cells expressing the human alpha(1)-AR (CHO-alpha(1)) and in neonatal cardiomyocytes. Preincubation experiments failed to demonstrate a tonic effect of anti-alpha(1) on Ca(i). However, preincubation with the antibody attenuated the effect of the alpha(1)-AR antagonist prazosin. In neonatal cardiomyocytes anti-alpha(1) induced a robust phosphorylation of a 15-kDa protein that is involved in alpha(1)-AR signalling. Our data support the notion that elevation of Ca(i) is a general feature of agonistic antibodies' action and constitute an important pathogenic component of hypertension-associated autoantibodies. Furthermore, we suggest that agonistic antibodies to the alpha(1)-AR contribute to hypertrophic remodelling of cardiac myocytes, and that the cardiac 15-kDa protein is a relevant downstream target of their action.


Assuntos
Anticorpos Monoclonais/farmacologia , Sinalização do Cálcio , Miócitos Cardíacos/química , Proteínas/metabolismo , Receptores Adrenérgicos alfa 1/fisiologia , Agonistas de Receptores Adrenérgicos alfa 1 , Animais , Animais Recém-Nascidos , Autoanticorpos , Células CHO , Cricetinae , Cricetulus , Humanos , Fosforilação , Ratos , Receptores Adrenérgicos alfa 1/genética , Transfecção
13.
J Immunol ; 181(9): 6574-83, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18941248

RESUMO

The heptahelical receptor CD97 is a defining member of the EGF-TM7 family of adhesion class receptors. In both humans and mice, CD97 isoforms are expressed with variable numbers of tandemly arranged N-terminal epidermal growth factor-like domains that facilitate interactions with distinct cellular ligands. Results from treatment of mice with mAbs in various disease models have suggested a role for CD97 in leukocyte trafficking. Here, we aimed to thoroughly characterize the expression profile of CD97, and delineate its biological function. To this end, we applied a novel polyclonal Ab, which is the first antiserum suitable for immunohistochemistry, and combined this analysis with the study of Cd97-lacZ knock-in mice. We show that similar to the situation in humans, hematopoietic, epithelial, endothelial, muscle, and fat cells expressed CD97. Despite this broad expression pattern, the Cd97(-/-) mouse that we created had no overt phenotype, except for a mild granulocytosis. Furthermore, granulocyte accumulation at sites of inflammation was normal in the absence of CD97. Interestingly, application of CD97 mAbs blocked granulocyte trafficking after thioglycollate-induced peritonitis in wild-type but not in knock-out mice. Hence, we conclude that CD97 mAbs actively induce an inhibitory effect that disturbs normal granulocyte trafficking, which is not perturbed by the absence of the molecule.


Assuntos
Anticorpos/administração & dosagem , Inibição de Migração Celular/imunologia , Regulação da Expressão Gênica/imunologia , Marcação de Genes , Granulócitos/citologia , Granulócitos/imunologia , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Animais , Anticorpos/fisiologia , Inibição de Migração Celular/genética , Feminino , Marcação de Genes/métodos , Granulócitos/metabolismo , Imunofenotipagem , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Leucocitose/genética , Leucocitose/imunologia , Leucocitose/patologia , Pulmão/citologia , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Receptores Acoplados a Proteínas G , Baço/citologia , Baço/imunologia , Baço/metabolismo
14.
J Mol Med (Berl) ; 85(12): 1405-12, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17717642

RESUMO

In contrast to immortal cell lines, primary cells are hardly susceptible to intracellular delivery methods such as transfection. In this study, we evaluated the direct delivery of several cell-permeable peptides under noninvasive conditions into living primary adult rat cardiomyocytes. We specifically monitored the functional effects of a cell-permeable peptide containing the 15 amino acid N-terminal peptide from human ventricular light chain-1 (VLC-1) on contraction and intracellular Ca2+ signals after electrical stimulation in primary adult cardiomyocytes. The transducible VLC-1 variant was taken up by cardiomyocytes within 5 min with more than 95% efficiency and localized to sarcomeric structures. Analysis of the functional effects of the cell-permeable VLC-1 revealed an enhancement of the intrinsic contractility of cardiomyocytes without affecting the intracellular Ca2+. Therefore, peptide transduction mediated by cell-penetrating peptides represents not only a unique strategy to enhance heart muscle function with no secondary effect on intracellular Ca2+ but also an invaluable tool for the modulation and manipulation of protein interactions in general and in primary cells.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cardiotônicos/farmacologia , Permeabilidade da Membrana Celular , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Cadeias Leves de Miosina/farmacologia , Fragmentos de Peptídeos/farmacologia , Miosinas Ventriculares/farmacologia , Animais , Cardiotônicos/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Estimulação Elétrica , Humanos , Microscopia Confocal , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/metabolismo , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Endogâmicos WKY , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Miosinas Ventriculares/metabolismo
15.
Cardiovasc Res ; 73(1): 19-25, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17045254

RESUMO

Ahnak, originally identified as a giant, tumour-related phosphoprotein, has emerged as an important signalling molecule in a wide range of physiological activities. In this article, current knowledge will be reviewed that places ahnak into the context of cardiac L-type Ca2+ channel function by its interaction with the beta2 subunit. Beginning with an overview on structural and functional properties of ahnak, basic features of beta subunits are highlighted. The review characterizes multiple ahnak/beta2 subunit binding sites and focuses on recent progress in understanding their functional role in Cav1.2 channel conductance (I(CaL)). Three main aspects of ahnak function in I(CaL) of cardiomyocytes emerge from available experimental data. First, ahnak acts as repressor towards I(CaL) by beta2 subunit sequestration. Second, PKA phosphorylation relieves the inhibition imposed by the C-terminal ahnak domain, ahnak-C1. Third, this action is mimicked by ahnak-derived fragments carrying a naturally occurring missense mutation Ile5236Thr. This paradigm introduces ahnak as a player in beta-adrenergic control of I(CaL) and sheds new light upon the molecular mechanism underlying this fundamental process of Cav1.2 channel physiology.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteínas de Membrana/fisiologia , Miócitos Cardíacos/metabolismo , Proteínas de Neoplasias/fisiologia , Transdução de Sinais/fisiologia , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Fosforilação , Ligação Proteica , Receptores Adrenérgicos beta 2/metabolismo
16.
Cell Calcium ; 41(5): 467-77, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17084891

RESUMO

While androgens generally have been associated with an increased cardiovascular risk, recent studies indicate potential beneficial acute effects of testosterone. However, detailed evaluation of chronic and acute actions of testosterone on the function of cardiac I(Ca,L) and intracellular Ca2+ handling is limited. To clarify this situation we performed whole-cell and single-channel analysis of I(Ca,L), recordings of Ca2+ sparks, measurements of contractility and quantitative real-time RT-PCR in rat cardiomyocytes following testosterone pretreatment and acute testosterone application. Pretreatment with testosterone 100 nM for 24-30 h increased whole-cell I(Ca,L) from 3.8+/-0.8 pA/pF (n=10) to 10.1+/-0.31 pA/pF (n=9) at +10 mV (p<0.001). Increase of I(Ca,L) density was caused by both, increased expression levels of the alpha 1C subunit of L-type calcium channel and a pronounced increment of the single-channel activity (availability 81.8+/-3.15% versus 37.1+/-7.01%; open probability 12.8+/-3.09% versus 1.0+/-0.62%, p<0.01). Moreover, testosterone pretreatment significantly increased the frequency of Ca2+ sparks and improved myocytes contractility without altering SR Ca2+ load. All chronic effects could be inhibited by flutamide. In contrast acute testosterone administration significantly reduced I(Ca,L) density. Indeed, on the single-channel level acute testosterone application completely reversed the chronic testosterone-mediated effects, and antagonized the chronic testosterone effects on Ca2+ spark frequency, which was unaffected by flutamide. Thus, testosterone pretreatment activates I(Ca,L) via nuclear receptor-mediated pathways, while testosterone acutely blocks I(Ca,L) in a direct manner. Thus, testosterone chronically affects the basal level of intracellular Ca2+ handling, which in addition rapidly may be modulated by acute changes of hormone levels.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Testosterona/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Ativação do Canal Iônico/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
17.
FASEB J ; 20(10): 1653-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16873888

RESUMO

The causal relationship between obesity and heart failure is broadly acknowledged; however, the pathophysiological mechanisms involved remain unclear. In this study we investigated whether human adipocytes secrete cardioactive substances that may affect cardiomyocyte contractility. We cultivated adipocytes obtained from human white adipose tissue and incubated isolated rat adult cardiomyocytes with adipocyte-conditioned or control medium. This is the first report to demonstrate that human adipocytes exhibit cardiodepressant activity with a direct and acute effect on cardiomyocyte contraction. This adipocyte-derived negative inotropic activity directly depresses shortening amplitude as well as intracellular systolic peak Ca2+ in cardiomyocytes within a few minutes. The adipocyte-derived cardiodepressant activity was dose-dependent and was completely blunted by heating or by trypsin digestion. Filtration of adipocyte-conditioned medium based on molecular mass characterized the cardiodepressant activity at between 10 and 30 kDa. In summary, adipose tissue exerts highly potent activity with an acute depressant effect directly on cardiomyocytes, which may well contribute to increased heart failure risk in overweight patients.


Assuntos
Adipócitos/fisiologia , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Adipócitos/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/análise , Insuficiência Cardíaca/etiologia , Humanos , Peso Molecular , Obesidade/complicações , Comunicação Parácrina , Ratos
18.
FASEB J ; 20(7): 865-73, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16675844

RESUMO

In this study we investigated whether the expression of N-terminal myosin light chain-1 (MLC-1) peptides could improve the intrinsic contractility of the whole heart. We generated transgenic rats (TGR) that overexpressed minigenes encoding the N-terminal 15 amino acids of human atrial MLC-1 (TGR/hALC-1/1-15, lines 7475 and 3966) or human ventricular MLC-1 (TGR/hVLC-1/1-15, lines 6113 and 6114) isoforms in cardiomyocytes. Synthetic N-terminal peptides revealed specific actin binding, with a significantly (P<0.01) lower dissociation constant (K(D)) for the hVLC-1/1-15-actin complex compared with the K(D) value of the hALC-1/1-15-actin complex. Using synthetic hVLC-1/1-15 as a TAT fusion peptide labeled with the fluorochrome TAMRA, we observed specific accumulation of the N-terminal MLC-1 peptide at the sarcomere predominantly within the actin-containing I-band, but also within the actin-myosin overlap zone (A-band) in intact adult cardiomyocytes. For the first time we show that the expression of N-terminal human MLC-1 peptides in TGR (range: 3-6 muM) correlated positively with significant (P<0.001) improvements of the intrinsic contractile state of the isolated perfused heart (Langendorff mode): systolic force generation, as well as the rates of both force generation and relaxation, rose in TGR lines that expressed the transgenic human MLC-1 peptide, but not in a TGR line with undetectable transgene expression levels. The positive inotropic effect of MLC-1 peptides occurred in the absence of a hypertrophic response. Thus, expression of N-terminal domains of MLC-1 represent a valuable tool for the treatment of the failing heart.


Assuntos
Coração/fisiologia , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Actinas , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica , Terapia Genética , Humanos , Masculino , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Ligação Proteica , Ratos , Ratos Endogâmicos WKY
19.
Channels (Austin) ; 11(6): 604-615, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28901828

RESUMO

L-type-voltage-dependent Ca2+ channels (L-VDCCs; CaV1.2, α1C), crucial in cardiovascular physiology and pathology, are modulated via activation of G-protein-coupled receptors and subsequently protein kinase C (PKC). Despite extensive study, key aspects of the mechanisms leading to PKC-induced Ca2+ current increase are unresolved. A notable residue, Ser1928, located in the distal C-terminus (dCT) of α1C was shown to be phosphorylated by PKC. CaV1.2 undergoes posttranslational modifications yielding full-length and proteolytically cleaved CT-truncated forms. We have previously shown that, in Xenopus oocytes, activation of PKC enhances α1C macroscopic currents. This increase depended on the isoform of α1C expressed. Only isoforms containing the cardiac, long N-terminus (L-NT), were upregulated by PKC. Ser1928 was also crucial for the full effect of PKC. Here we report that, in Xenopus oocytes, following PKC activation the amount of α1C protein expressed in the plasma membrane (PM) increases within minutes. The increase in PM content is greater with full-length α1C than in dCT-truncated α1C, and requires Ser1928. The same was observed in HL-1 cells, a mouse atrium cell line natively expressing cardiac α1C, which undergoes the proteolytic cleavage of the dCT, thus providing a native setting for exploring the effects of PKC in cardiomyocytes. Interestingly, activation of PKC preferentially increased the PM levels of full-length, L-NT α1C. Our findings suggest that part of PKC regulation of CaV1.2 in the heart involves changes in channel's cellular fate. The mechanism of this PKC regulation appears to involve the C-terminus of α1C, possibly corroborating the previously proposed role of NT-CT interactions within α1C.


Assuntos
Canais de Cálcio Tipo L/biossíntese , Membrana Celular/metabolismo , Proteína Quinase C/metabolismo , Animais , Células Cultivadas , Camundongos , Xenopus laevis
20.
FASEB J ; 19(6): 503-11, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15791000

RESUMO

We investigated expression regulation of the human atrial myosin light chain 1 (hALC-1) gene using a cardiomyocyte H9c2 cell line stably transfected with a construct consisting of the human ALC-1 promoter cloned in front of the luciferase gene (H9c2T1). H9c2T1 cells were stimulated with vasopressin, which is known to induce cardiomyocyte hypertrophy and to activate a panel of signaling pathways. Those pathways involved in hALC-1 promoter activity regulation were dissected by using pharmacological inhibitor substances. Stimulation with vasopressin was associated with nuclear NFAT translocation and significantly increased human ALC-1 promoter activity. Inhibition of calcineurin by cyclosporin A blocked the effects of vasopressin on ALC-1 promoter activity to approximately 50%. This suggests that the Ca2+-calmodulin-calcineurin-NFAT pathway is involved in human ALC-1 promoter activation. However, inhibition of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) by KN-93 decreased human ALC-1 promoter activity to almost basal levels. CaMK regulation of ALC-1 promoter activity effect could well be mediated by CaMKIV, which accumulated in the nucleus upon vasopressin stimulation. Inhibition of protein kinase C (PKC) isoforms by bisindolylmaleimide had no significant influence on human ALC-1 promoter activity. Thus, our results demonstrate a dominant role of Ca2+-calmodulin-dependent signaling pathways in the regulation of human ALC-1 expression.


Assuntos
Cálcio/farmacologia , Calmodulina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Cadeias Leves de Miosina/genética , Regiões Promotoras Genéticas/genética , Animais , Transporte Biológico/efeitos dos fármacos , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/análise , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Embrião de Mamíferos , Imunofluorescência , Expressão Gênica/efeitos dos fármacos , Genótipo , Coração , Humanos , Immunoblotting , Isoenzimas/análise , Luciferases/genética , Miócitos Cardíacos , Fatores de Transcrição NFATC/análise , Fatores de Transcrição NFATC/metabolismo , Proteína Quinase C/antagonistas & inibidores , Ratos , Proteínas Recombinantes de Fusão , Transfecção , Vasopressinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA