RESUMO
CASE: During dissection of the upper limb of a cadaver in preparation for a first-year anatomy course, an extensor indicis proprius (EIP) variant was discovered with its muscle belly extending distal to the extensor retinaculum and beyond what has been previously described in the literature. CONCLUSION: EIP is commonly used as a tendon transfer for extensor pollicis longus rupture. Few anatomic variants of EIP have been reported in the literature, but such variants should be considered because of their consequences to the success of tendon transfer and potential implications for diagnosis of an otherwise unexplained mass of the wrist.
Assuntos
Músculo Esquelético , Traumatismos dos Tendões , Humanos , Músculo Esquelético/anormalidades , Transferência Tendinosa , Punho , Articulação do PunhoRESUMO
The development of rehabilitation engineering technologies such as the design of smart prosthetics necessitates a deep understanding of brain mechanisms engaged in ecological situations when human interact with new tools and/or environments. Thus, we aimed to investigate potential hemodynamic signatures reflecting the level of cognitive-motor performance and/or the internal or mental states of individuals when learning a novel tool with unknown properties. These markers were derived from functional Near Infrared Spectroscopy (fNIR) signals. Our results indicate an increased level of oxy-hemoglobin in prefrontal sensors associated with enhanced kinematics during early compared with late learning. This is consistent with previous neuroimaging studies that revealed a higher contribution of prefrontal areas during early compare to late adaptation learning. These non-invasive functional hemodynamic markers may play a role in bioengineering applications such as smart neuroprosthesis and brain monitoring where adaptive behavior is important.