Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Genet ; 10(2): e1004188, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586208

RESUMO

Transcriptional dysregulation has long been recognized as central to the pathogenesis of Huntington's disease (HD). MicroRNAs (miRNAs) represent a major system of post-transcriptional regulation, by either preventing translational initiation or by targeting transcripts for storage or for degradation. Using next-generation miRNA sequencing in prefrontal cortex (Brodmann Area 9) of twelve HD and nine controls, we identified five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-615-3p and miR-1247-5p) up-regulated in HD at genome-wide significance (FDR q-value<0.05). Three of these, miR-196a-5p, miR-196b-5p and miR-615-3p, were expressed at near zero levels in control brains. Expression was verified for all five miRNAs using reverse transcription quantitative PCR and all but miR-1247-5p were replicated in an independent sample (8HD/8C). Ectopic miR-10b-5p expression in PC12 HTT-Q73 cells increased survival by MTT assay and cell viability staining suggesting increased expression may be a protective response. All of the miRNAs but miR-1247-5p are located in intergenic regions of Hox clusters. Total mRNA sequencing in the same samples identified fifteen of 55 genes within the Hox cluster gene regions as differentially expressed in HD, and the Hox genes immediately adjacent to the four Hox cluster miRNAs as up-regulated. Pathway analysis of mRNA targets of these miRNAs implicated functions for neuronal differentiation, neurite outgrowth, cell death and survival. In regression models among the HD brains, huntingtin CAG repeat size, onset age and age at death were independently found to be inversely related to miR-10b-5p levels. CAG repeat size and onset age were independently inversely related to miR-196a-5p, onset age was inversely related to miR-196b-5p and age at death was inversely related to miR-615-3p expression. These results suggest these Hox-related miRNAs may be involved in neuroprotective response in HD. Recently, miRNAs have shown promise as biomarkers for human diseases and given their relationship to disease expression, these miRNAs are biomarker candidates in HD.


Assuntos
Diferenciação Celular/genética , Genes Homeobox , Doença de Huntington/genética , MicroRNAs/biossíntese , Animais , Autopsia , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Huntington/patologia , MicroRNAs/genética , Neurônios/citologia , Fármacos Neuroprotetores , Células PC12 , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , RNA Mensageiro/genética , Ratos
2.
Mov Disord ; 30(14): 1961-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26573701

RESUMO

BACKGROUND: Biomarkers for Huntington's disease progression could accelerate therapeutic developments and improve patient care. Brain microRNAs relating to clinical features of Huntington's disease may represent a potential Huntington's disease biomarker in blood. OBJECTIVE: This study was undertaken to examine candidate microRNAs in plasma to determine whether changes observed in HD brains are detectable in peripheral samples. METHODS: Four microRNAs from 26 manifest Huntington's disease, four asymptomatic Huntington's disease gene carriers, and eight controls were quantified in plasma using reverse transcription quantitative polymerase chain reaction. Linear regression was used to assess microRNA levels across control, asymptomatic gene carriers, and manifest patients. RESULTS: miR-10b-5p (P = 0.0068) and miR-486-5p (P = 0.044) were elevated in Huntington's disease plasma. miR-10b-5p was decreased in asymptomatic gene carriers as compared with patients with Huntington's disease (P = 0.049), but no difference between asymptomatic gene carriers and healthy controls was observed (P = 0.24). CONCLUSIONS: These findings suggest that microRNA changes observed in Huntington's disease brain may be detectable in plasma and have potential clinical utility.


Assuntos
Encéfalo/patologia , Doença de Huntington/metabolismo , MicroRNAs/sangue , Adolescente , Adulto , Biomarcadores/sangue , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
PLoS Genet ; 8(6): e1002794, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22761592

RESUMO

Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR-significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression-SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD-relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms.


Assuntos
Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Doença de Parkinson/genética , Córtex Pré-Frontal/metabolismo , Idade de Início , Idoso de 80 Anos ou mais , Sítios de Ligação , Proteína Forkhead Box O1 , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Corpos de Lewy/genética , Corpos de Lewy/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Doença de Parkinson/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Poliamina Oxidase
4.
Lancet Neurol ; 16(11): 908-916, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28958801

RESUMO

BACKGROUND: Better understanding and prediction of progression of Parkinson's disease could improve disease management and clinical trial design. We aimed to use longitudinal clinical, molecular, and genetic data to develop predictive models, compare potential biomarkers, and identify novel predictors for motor progression in Parkinson's disease. We also sought to assess the use of these models in the design of treatment trials in Parkinson's disease. METHODS: A Bayesian multivariate predictive inference platform was applied to data from the Parkinson's Progression Markers Initiative (PPMI) study (NCT01141023). We used genetic data and baseline molecular and clinical variables from patients with Parkinson's disease and healthy controls to construct an ensemble of models to predict the annual rate of change in combined scores from the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts II and III. We tested our overall explanatory power, as assessed by the coefficient of determination (R2), and replicated novel findings in an independent clinical cohort from the Longitudinal and Biomarker Study in Parkinson's disease (LABS-PD; NCT00605163). The potential utility of these models for clinical trial design was quantified by comparing simulated randomised placebo-controlled trials within the out-of-sample LABS-PD cohort. FINDINGS: 117 healthy controls and 312 patients with Parkinson's disease from the PPMI study were available for analysis, and 317 patients with Parkinson's disease from LABS-PD were available for validation. Our model ensemble showed strong performance within the PPMI cohort (five-fold cross-validated R2 41%, 95% CI 35-47) and significant-albeit reduced-performance in the LABS-PD cohort (R2 9%, 95% CI 4-16). Individual predictive features identified from PPMI data were confirmed in the LABS-PD cohort. These included significant replication of higher baseline MDS-UPDRS motor score, male sex, and increased age, as well as a novel Parkinson's disease-specific epistatic interaction, all indicative of faster motor progression. Genetic variation was the most useful predictive marker of motor progression (2·9%, 95% CI 1·5-4·3). CSF biomarkers at baseline showed a more modest (0·3%, 95% CI 0·1-0·5) but still significant effect on prediction of motor progression. The simulations (n=5000) showed that incorporating the predicted rates of motor progression (as assessed by the annual change in MDS-UPDRS score) into the final models of treatment effect reduced the variability in the study outcome, allowing significant differences to be detected at sample sizes up to 20% smaller than in naive trials. INTERPRETATION: Our model ensemble confirmed established and identified novel predictors of Parkinson's disease motor progression. Improvement of existing prognostic models through machine-learning approaches should benefit trial design and evaluation, as well as clinical disease monitoring and treatment. FUNDING: Michael J Fox Foundation for Parkinson's Research and National Institute of Neurological Disorders and Stroke.


Assuntos
Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Estudos de Coortes , Feminino , Humanos , Masculino , Doença de Parkinson/diagnóstico
5.
PLoS One ; 11(8): e0160925, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27508417

RESUMO

Genome-wide association studies (GWAS) have identified the GAK/DGKQ/IDUA region on 4p16.3 among the top three risk loci for Parkinson's disease (PD), but the specific gene and risk mechanism are unclear. Here, we report transcripts containing the 3' clathrin-binding domain of GAK identified by RNA deep-sequencing in post-mortem human brain tissue as having increased expression in PD. Furthermore, carriers of 4p16.3 PD GWAS risk SNPs show decreased expression of one of these transcripts, GAK25 (Gencode Transcript 009), which correlates with the expression of genes functioning in the synaptic vesicle membrane. Together, these findings provide strong evidence for GAK clathrin-binding- and J-domain transcripts' influence on PD pathogenicity, and for a role for GAK in regulating synaptic function in PD.


Assuntos
Cromossomos Humanos Par 4 , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/genética , Vesículas Sinápticas/genética , Encéfalo/patologia , Éxons , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Mitocôndrias/genética , Doença de Parkinson/patologia
7.
PLoS One ; 10(12): e0143563, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26636579

RESUMO

Huntington's Disease (HD) is a devastating neurodegenerative disorder that is caused by an expanded CAG trinucleotide repeat in the Huntingtin (HTT) gene. Transcriptional dysregulation in the human HD brain has been documented but is incompletely understood. Here we present a genome-wide analysis of mRNA expression in human prefrontal cortex from 20 HD and 49 neuropathologically normal controls using next generation high-throughput sequencing. Surprisingly, 19% (5,480) of the 28,087 confidently detected genes are differentially expressed (FDR<0.05) and are predominantly up-regulated. A novel hypothesis-free geneset enrichment method that dissects large gene lists into functionally and transcriptionally related groups discovers that the differentially expressed genes are enriched for immune response, neuroinflammation, and developmental genes. Markers for all major brain cell types are observed, suggesting that HD invokes a systemic response in the brain area studied. Unexpectedly, the most strongly differentially expressed genes are a homeotic gene set (represented by Hox and other homeobox genes), that are almost exclusively expressed in HD, a profile not widely implicated in HD pathogenesis. The significance of transcriptional changes of developmental processes in the HD brain is poorly understood and warrants further investigation. The role of inflammation and the significance of non-neuronal involvement in HD pathogenesis suggest anti-inflammatory therapeutics may offer important opportunities in treating HD.


Assuntos
Perfilação da Expressão Gênica/métodos , Genes Controladores do Desenvolvimento , Doença de Huntington/genética , Inflamação/genética , Análise de Sequência de RNA/métodos , Adulto , Idoso , Encéfalo/imunologia , Encéfalo/metabolismo , Regulação da Expressão Gênica , Genes Homeobox , Humanos , Masculino , Pessoa de Meia-Idade
8.
BMC Med Genomics ; 8: 10, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25889241

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that recognize sites of complementarity of target messenger RNAs, resulting in transcriptional regulation and translational repression of target genes. In Huntington's disease (HD), a neurodegenerative disease caused by a trinucleotide repeat expansion, miRNA dyregulation has been reported, which may impact gene expression and modify the progression and severity of HD. METHODS: We performed next-generation miRNA sequence analysis in prefrontal cortex (Brodmann Area 9) from 26 HD, 2 HD gene positive, and 36 control brains. Neuropathological information was available for all HD brains, including age at disease onset, CAG-repeat size, Vonsattel grade, and Hadzi-Vonsattel striatal and cortical scores, a continuous measure of the extent of neurodegeneration. Linear models were performed to examine the relationship of miRNA expression to these clinical features, and messenger RNA targets of associated miRNAs were tested for gene ontology term enrichment. RESULTS: We identified 75 miRNAs differentially expressed in HD brain (FDR q-value <0.05). Among the HD brains, nine miRNAs were significantly associated with Vonsattel grade of neuropathological involvement and three of these, miR-10b-5p, miR-10b-3p, and miR-302a-3p, significantly related to the Hadzi-Vonsattel striatal score (a continuous measure of striatal involvement) after adjustment for CAG length. Five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-10b-3p, and miR-106a-5p) were identified as having a significant relationship to CAG length-adjusted age of onset including miR-10b-5p, the mostly strongly over-expressed miRNA in HD cases. Although prefrontal cortex was the source of tissue profiled in these studies, the relationship of miR-10b-5p expression to striatal involvement in the disease was independent of cortical involvement. Correlation of miRNAs to the clinical features clustered by direction of effect and the gene targets of the observed miRNAs showed association to processes relating to nervous system development and transcriptional regulation. CONCLUSIONS: These results demonstrate that miRNA expression in cortical BA9 provides insight into striatal involvement and support a role for these miRNAs, particularly miR-10b-5p, in HD pathogenicity. The miRNAs identified in our studies of postmortem brain tissue may be detectable in peripheral fluids and thus warrant consideration as accessible biomarkers for disease stage, rate of progression, and other important clinical characteristics of HD.


Assuntos
Encéfalo/patologia , Corpo Estriado/metabolismo , Regulação da Expressão Gênica , Doença de Huntington/genética , MicroRNAs/genética , Adulto , Idade de Início , Idoso , Córtex Cerebral/patologia , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Lineares , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade
9.
PLoS One ; 7(10): e46199, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071545

RESUMO

The recent Parkinson Disease GWAS Consortium meta-analysis and replication study reports association at several previously confirmed risk loci SNCA, MAPT, GAK/DGKQ, and HLA and identified a novel risk locus at RIT2. To further explore functional consequences of these associations, we investigated modification of gene expression in prefrontal cortex brain samples of pathologically confirmed PD cases (N = 26) and controls (N = 24) by 67 associated SNPs in these 5 loci. Association between the eSNPs and expression was evaluated using a 2-degrees of freedom test of both association and difference in association between cases and controls, adjusted for relevant covariates. SNPs at each of the 5 loci were tested for cis-acting effects on all probes within 250 kb of each locus. Trans-effects of the SNPs on the 39,122 probes passing all QC on the microarray were also examined. From the analysis of cis-acting SNP effects, several SNPs in the MAPT region show significant association to multiple nearby probes, including two strongly correlated probes targeting the gene LOC644246 and the duplicated genes LRRC37A and LRRC37A2, and a third uncorrelated probe targeting the gene DCAKD. Significant cis-associations were also observed between SNPs and two probes targeting genes in the HLA region on chromosome 6. Expanding the association study to examine trans effects revealed an additional 23 SNP-probe associations reaching statistical significance (p<2.8 × 10(-8)) including SNPs from the SNCA, MAPT and RIT2 regions. These findings provide additional context for the interpretation of PD associated SNPs identified in recent GWAS as well as potential insight into the mechanisms underlying the observed SNP associations.


Assuntos
Predisposição Genética para Doença , Doença de Parkinson/genética , Locos de Características Quantitativas , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único
10.
Parkinsons Dis ; 2012: 614212, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22530163

RESUMO

Duplications and triplications of the α-synuclein (SNCA) gene increase risk for PD, suggesting increased expression levels of the gene to be associated with increased PD risk. However, past SNCA expression studies in brain tissue report inconsistent results. We examined expression of the full-length SNCA transcript (140 amino acid protein isoform), as well as total SNCA mRNA levels in 165 frontal cortex samples (101 PD, 64 control) using quantitative real-time polymerase chain reaction. Additionally, we evaluated the relationship of eight SNPs in both 5' and 3' regions of SNCA with the gene expression levels. The association between postmortem interval (PMI) and SNCA expression was different for PD and control samples: SNCA expression decreased with increasing PMI in cases, while staying relatively constant in controls. For short PMI, SNCA expression was increased in PD relative to control samples, whereas for long PMI, SNCA expression in PD was decreased relative to control samples.

11.
Neurology ; 79(16): 1708-15, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23035064

RESUMO

OBJECTIVE: To evaluate the relationship of striatal involvement in Huntington disease (HD) to involvement in other brain regions, CAG repeat size, onset age, and other factors. METHODS: We examined patterns of neuropathologic involvement in 664 HD brains submitted to the Harvard Brain Tissue Resource Center. Brains with concomitant Alzheimer or Parkinson changes (n = 82), more than 20% missing data (n = 46), incomplete sample submission (n = 12), or CAG repeat less than 36 (n = 1) were excluded, leaving 523 cases. Standardized ratings from 0 (absent) to 4 (severe) of gross and microscopic involvement were performed for 50 regions. Cluster analysis reduced the data to 2 main measures of involvement: striatal and cortical. RESULTS: The clusters were correlated with each other (r = 0.42) and with disease duration (striatal: r = 0.35; cortical: r = 0.31). The striatal cluster was correlated with HD repeat size (r = 0.50). The cortical cluster showed a stronger correlation with decreased brain weight (r = -0.52) than the striatal cluster (r = -0.33). The striatal cluster was correlated with younger death age (r = -0.31) and onset age (r = -0.46) while the cortical cluster was not (r = 0.09, r = -0.04, respectively). CONCLUSIONS: The 2 brain clusters had different relationships to the HD CAG repeat size, onset age, and brain weight, suggesting that neuropathologic involvement does not proceed in a strictly coupled fashion. The pattern and extent of involvement varies substantially from one brain to the next. These results suggest that regional involvement in HD brain is modified by factors which, if identified, may lend insight into novel routes to therapeutics.


Assuntos
Córtex Cerebral/patologia , Doença de Huntington/patologia , Neostriado/patologia , Adulto , Idade de Início , Idoso , Autopsia , Encéfalo/patologia , Cadáver , Núcleo Caudado/patologia , Análise por Conglomerados , Feminino , Gliose/patologia , Humanos , Doença de Huntington/genética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Neurônios/patologia , Tamanho do Órgão , Repetições de Trinucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA