Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nat Genet ; 23(1): 86-9, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10471505

RESUMO

Recent large-scale mutagenesis screens have made the zebrafish the first vertebrate organism to allow a forward genetic approach to the discovery of developmental control genes. Mutations can be cloned positionally, or placed on a simple sequence length polymorphism (SSLP) map to match them with mapped candidate genes and expressed sequence tags (ESTs). To facilitate the mapping of candidate genes and to increase the density of markers available for positional cloning, we have created a radiation hybrid (RH) map of the zebrafish genome. This technique is based on somatic cell hybrid lines produced by fusion of lethally irradiated cells of the species of interest with a rodent cell line. Random fragments of the donor chromosomes are integrated into recipient chromosomes or retained as separate minichromosomes. The radiation-induced breakpoints can be used for mapping in a manner analogous to genetic mapping, but at higher resolution and without a need for polymorphism. Genome-wide maps exist for the human, based on three RH panels of different resolutions, as well as for the dog, rat and mouse. For our map of the zebrafish genome, we used an existing RH panel and 1,451 sequence tagged site (STS) markers, including SSLPs, cloned candidate genes and ESTs. Of these, 1,275 (87.9%) have significant linkage to at least one other marker. The fraction of ESTs with significant linkage, which can be used as an estimate of map coverage, is 81.9%. We found the average marker retention frequency to be 18.4%. One cR3000 is equivalent to 61 kb, resulting in a potential resolution of approximately 350 kb.


Assuntos
Genoma , Mapeamento Físico do Cromossomo , Peixe-Zebra/genética , Animais , Mapeamento Cromossômico , Eletroforese em Gel de Ágar , Etiquetas de Sequências Expressas , Marcadores Genéticos , Escore Lod , Modelos Genéticos , Polimorfismo Genético , Sitios de Sequências Rotuladas , Software
2.
Curr Biol ; 4(3): 189-202, 1994 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-7922324

RESUMO

BACKGROUND: In Drosophila melanogaster and Caenorhabditis elegans, the elucidation of developmental mechanisms has relied primarily on the systematic induction and isolation of mutations in genes with specific functions in development. Such an approach has not yet been possible in a vertebrate species, owing to the difficulty of analyzing and keeping a sufficiently high number of mutagenized lines of animals. RESULTS: We have developed the methods necessary to perform large-scale saturation screens for mutations affecting embryogenesis in the zebrafish, Danio (Brachydanio) rerio. Firstly, a new aquarium system was developed to raise and keep large numbers of strains of genetically different fish safely and with little maintenance care. Secondly, by placing adult male fish in water containing the chemical mutagen, ethylnitrosourea, we induced point mutations in premeiotic germ cells with a rate of one to three mutations per locus per 1,000 mutagenized haploid genomes. This rate, which is similar to the mutagenesis rates produced by ethylmethanesulfonate in Drosophila, was determined for alleles at four different pigmentation genes. Finally, in a pilot screen in which mutagenized fish were inbred for two generations and scored for embryonic mutants, we isolated 100 recessive mutations with phenotypes visible in the homozygous embryos. CONCLUSION: The high rate of induction and recovery of point mutations, in addition to an efficient aquarium system to house large numbers of mutagenized lines, means that it is now possible to perform saturation mutagenesis screens in a vertebrate, similar to those done in invertebrates.


Assuntos
Peixe-Zebra/genética , Criação de Animais Domésticos , Animais , Cruzamentos Genéticos , Desenvolvimento Embrionário e Fetal/genética , Metanossulfonato de Etila , Etilnitrosoureia , Feminino , Deleção de Genes , Genes Letais , Masculino , Meiose/genética , Mitose/genética , Mutagênese , Projetos Piloto , Mutação Puntual , Espermatogênese/genética , Peixe-Zebra/embriologia
3.
Mol Cell Biol ; 10(9): 4590-5, 1990 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-2167435

RESUMO

Mitochondrial translation of the mRNA encoding cytochrome c oxidase subunit III (coxIII) specifically requires the action of three position activator proteins encoded in the nucleus of Saccharomyces cerevisiae. Some mutations affecting one of these activators, PET122, can be suppressed by mutations in an unlinked nuclear gene termed PET123. PET123 function was previously demonstrated to be required for translation of all mitochondrial gene products. We have now generated an antibody against the PET123 protein and have used it to demonstrate that PET123 is a mitochondrial ribosomal protein of the small subunit. PET123 appears to be present at levels comparable to those of other mitochondrial ribosomal proteins, and its accumulation is dependent on the presence of the 15S rRNA gene in mitochondria. Taken together with the previous genetic data, these results strongly support a model in which the mRNA-specific translational activator PET122 works by directly interacting with the small ribosomal subunit to promote translation initiation on the coxIII mRNA.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Substâncias Macromoleculares , Plasmídeos , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
J Mol Biol ; 198(4): 579-87, 1987 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-3323534

RESUMO

An Escherichia coli chromosomally coded factor termed FIS (Factor for Inversion Stimulation) stimulates the Cin protein-mediated, site-specific DNA inversion system of bacteriophage P1 more than 500-fold. We have purified FIS and the recombinase Cin, and studied the inversion reaction in vitro. DNA footprinting studies with DNase I showed that Cin specifically binds to the recombination site, called cix. FIS does not bind to cix sites but does bind to a recombinational enhancer sequence that is required in cis for efficient recombination. FIS also binds specifically to sequences outside the enhancer, as well as to sequences unrelated to Cin inversion. On the basis of these data, we discuss the possibility of additional functions for FIS in E. coli.


Assuntos
Proteínas de Transporte/isolamento & purificação , Colífagos/genética , DNA Nucleotidiltransferases/isolamento & purificação , DNA Viral/metabolismo , Proteínas de Escherichia coli , Recombinação Genética , Sequência de Bases , Elementos Facilitadores Genéticos , Escherichia coli/genética , Fator Proteico para Inversão de Estimulação , Fatores Hospedeiros de Integração
5.
J Mol Biol ; 205(3): 493-500, 1989 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-2648006

RESUMO

A series of recombinational enhancer mutants was constructed by manipulating the ClaI site between the two FIS binding sites of the Hin enhancer. These mutants include insertions from two to 12 base-pairs and two deletions of one or two base-pairs. Recombinational enhancer activity was found only with four mutants carrying either a four base-pair substitution, ten base-pair insertions or a one base-pair deletion, respectively; two other ten base-pair insertion mutants, however, were inactive, although FIS protein binding was unaffected. So, besides binding of FIS protein to its specific sites within the enhancer sequence and the correct helical positioning of these sites on the DNA, another criterion for enhancer activity must be fulfilled. DNA bending assays identify this requirement as a change of the enhancer DNA conformation, which FIS protein is able to induce and to stabilize. This conformational change of the DNA can be blocked by mutations in the central segment between the two FIS binding sites of the Hin enhancer. This sequence has special functions for the recombinational enhancer activity.


Assuntos
Bacteriófagos/genética , Proteínas de Transporte/genética , Elementos Facilitadores Genéticos , Proteínas de Escherichia coli , Genes Virais , Recombinação Genética , Proteínas Virais/genética , Sequência de Bases , Sítios de Ligação , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Escherichia coli , Fator Proteico para Inversão de Estimulação , Fatores Hospedeiros de Integração , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico
6.
Genetics ; 131(2): 255-60, 1992 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-1644270

RESUMO

The fission yeast Schizosaccharomyces pombe has never been found to give rise to viable cells totally lacking mitochondrial DNA (rho(o)). This paper describes the isolation of rho(o) strains of S. pombe by very long term incubation of cells in liquid medium containing glucose, potassium acetate and ethidium bromide. Once isolated, the rho(o) strains did not require potassium acetate or any other novel growth factors. These nonrespiring strains contained no mitochondrial DNA (mtDNA) detectable either by gel-blot hybridization using as probe a clone containing the entire S. pombe mtDNA, or by 1',6-diamidino-2-phenylindole staining of whole cells. Induction of rho(o) derivatives of standard laboratory strains was not reproducible from culture to culture. The cause of this irreproducibility appears to be that growth of the rho(o) strains of S. pombe depended on nuclear mutations that occurred in some, but not all, of the initial cultures. Two independent rho(o) isolates contained mutations in unlinked genes, termed ptp1-1 and ptp2-1. These mutations allowed reproducible ethidium bromide induction of viable rho(o) strains. No other phenotypes were associated with ptp mutations in rho+ strains.


Assuntos
DNA Fúngico/genética , DNA Mitocondrial/genética , Genes Fúngicos , Schizosaccharomyces/genética , Núcleo Celular , Cruzamentos Genéticos , Metabolismo Energético , Etídio , Mutagênese , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo
7.
Genetics ; 125(3): 495-503, 1990 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-1696234

RESUMO

Translation of the Saccharomyces cerevisiae mitochondrial mRNA encoding cytochrome c oxidase subunit III (coxIII) specifically requires the products of at least three nuclear genes, PET122, PET494 and PET54. pet122 mutations that remove 24-67 amino acid residues from the carboxyterminus of the gene product were found to be suppressed by unlinked nuclear mutations. These unlinked suppressors fail to suppress both a pet122 missense mutation and a complete pet122 deletion. One of the suppressor mutations causes a heat-sensitive nonrespiratory growth phenotype in an otherwise wild-type strain and reduces translation of all mitochondrial gene products in cells grown at high temperature. This suppressor maps to a newly identified gene on chromosome XV termed PET123. The sequence of a DNA fragment carrying PET123 contains one major open reading frame encoding a basic protein of 318 amino acids. Inactivation of the chromosomal copy of PET123 by interruption of this open reading frame causes cells to become rho- (sustain large deletions in their mtDNA). This phenotype is characteristic for null alleles of genes whose products are essential for general mitochondrial protein synthesis. Thus our data strongly suggest that the PET123 protein is a component of the mitochondrial translation apparatus that interacts directly with the coxIII-mRNA-specific translational activator PET122.


Assuntos
Proteínas Fúngicas/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA/genética , Proteínas Ribossômicas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Fúngicos , Proteínas Fúngicas/biossíntese , Genes Fúngicos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Mutação , RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Mitocondrial , Mapeamento por Restrição , Saccharomyces cerevisiae/metabolismo , Supressão Genética , Temperatura
8.
Genetics ; 127(2): 319-26, 1991 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-1848523

RESUMO

Expression of the Saccharomyces cerevisiae mitochondrial gene coding cytochrome c oxidase subunit III is specifically activated at the level of translation by at least three nuclear genes, PET122, PET494 and PET54. We have shown previously that carboxy-terminal deletions of PET122 are allele-specifically suppressed by mutations in an unlinked nuclear gene, termed PET123, that encodes a small subunit ribosomal protein. Here we describe additional pet122 suppressors generated by mutations in a second gene which we show to be the previously identified nuclear gene MRP1. Like PET123, MRP1 encodes a component of the small subunit of mitochondrial ribosomes. Our mrp1 mutations are allele-specific suppressors of carboxyl-terminal truncations of the PET122 protein and do not bypass the requirement for residual function of PET122. None of our mrp1 mutations has an intrinsic phenotype in an otherwise wild-type background. However, some of the mrp1 mutations cause a non-conditional respiratory-defective phenotype in combination with certain pet123 alleles. This synthetic defective phenotype suggests that the ribosomal proteins PET123 and MRP1 interact functionally with each other. The fact that they can both mutate to suppress certain alleles of the mRNA-specific translational activator PET122 strongly suggests that the PET122 protein promotes translation of the coxIII mRNA via an interaction with the small subunit of mitochondrial ribosomes.


Assuntos
DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Genes Fúngicos , Genes Supressores , Genótipo , Substâncias Macromoleculares , Mitocôndrias/enzimologia , Modelos Genéticos , Fenótipo , Mapeamento por Restrição , Saccharomyces cerevisiae/enzimologia
9.
Mech Dev ; 80(2): 223-6, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10072793

RESUMO

We have identified Zkrml2, a novel homologue of the segmentation gene Krml/val in zebrafish (Danio rerio). Zkrml2 shows 72% and 92% identity in its basic leucine zipper domain with mouse Krml1 and zebrafish val, respectively. Zkrml2 is expressed coincident with MyoD throughout the somites starting at the three somite stage, becomes restricted to the dermomyotome, and subsequently disappears. Transient expression is also detected in the reticulospinal and oculomotor neurons. Zkrml2 maps to the Oregon linkage group 11 (Boston Linkage group 14) with no mapped zebrafish mutations nearby.


Assuntos
Proteínas Aviárias , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes , Proteínas Oncogênicas , Somitos/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Proteínas de Ligação a DNA/biossíntese , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Feminino , Zíper de Leucina/genética , Fatores de Transcrição Maf , Fator de Transcrição MafB , Masculino , Mesencéfalo/embriologia , Mesencéfalo/metabolismo , Camundongos , Dados de Sequência Molecular , Morfogênese/genética , Mutagênese , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Especificidade de Órgãos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-maf , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Fatores de Transcrição/biossíntese , Peixe-Zebra/embriologia
10.
Mech Dev ; 99(1-2): 187-90, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11091091

RESUMO

Forkhead activin signal transducer (FAST) is a member of the winged-helix family of DNA-binding proteins that has been implicated in mesoderm induction and left-right axis specification during embryonic development in Xenopus and mouse. We have cloned and characterized a zebrafish FAST homolog. Zebrafish fast is expressed maternally and zygotically. Transcripts start regionalizing and decline in level during gastrulation. During somitogenesis, fast is expressed bilaterally in the lateral plate mesoderm, like its mouse homolog. In addition, zebrafish fast is also expressed bilaterally in the dorsal diencephalon, where the nodal-related cyclops gene is only expressed on the left side. It remains to be demonstrated whether FAST expression in the brain can mediate Nodal-induced asymmetric development.


Assuntos
Clonagem Molecular , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Encéfalo/embriologia , DNA Complementar/metabolismo , Fatores de Transcrição Forkhead , Hibridização In Situ , Mesoderma/metabolismo , Dados de Sequência Molecular , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Somitos/metabolismo , Fatores de Tempo
11.
Mech Dev ; 91(1-2): 409-13, 2000 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-10704875

RESUMO

The floor plate of the neural tube serves an important function as a source of signals that pattern cell fates in the nervous system as well as directing proper axon pathfinding. We have cloned a novel zebrafish wnt family member, wnt4b, which is expressed exclusively in the floor plate. To place wnt4b in the context of known regulators of midline development, its expression was analyzed in the zebrafish mutants cyclops (cyc), floating head (flh), you-too (yot), and sonic you (syu). wnt4b expression in the medial and lateral floor plate are shown to be regulated independently: medial floor plate expression occurs in the absence of a notochord, while lateral floor plate expression requires a functional notochord, sonic hedgehog and gli-2.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Oncogênicas/genética , Proteínas/genética , Proteínas Proto-Oncogênicas/genética , Transativadores , Fatores de Transcrição/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Proteínas Hedgehog , Dados de Sequência Molecular , Mutação , Homologia de Sequência de Aminoácidos , Proteínas Wnt , Proteína Wnt4 , Peixe-Zebra/embriologia , Proteína GLI1 em Dedos de Zinco
12.
Mech Dev ; 76(1-2): 101-15, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9767138

RESUMO

The role of zebrafish hedgehog genes in branchiomotor neuron development was analyzed by examining mutations that affect the expression of the hedgehog genes and by overexpressing these genes in embryos. In cyclops mutants, reduction in sonic hedgehog (shh) expression, and elimination of tiggy-winkle hedgehog (twhh) expression, correlated with reductions in branchiomotor neuron populations. Furthermore, branchiomotor neurons were restored in cyclops mutants when shh or twhh was overexpressed. These results suggest that Shh and/or Twhh play an important role in the induction of branchiomotor neurons in vivo. In sonic-you (syu) mutants, where Shh activity was reduced or eliminated due to mutations in shh, branchiomotor neurons were reduced in number in a rhombomere-specific fashion, but never eliminated. Similarly, spinal motor neurons were reduced, but not eliminated, in syu mutants. These results demonstrate that Shh is not solely responsible for inducing branchiomotor and spinal motor neurons, and suggest that Shh and Twhh may function as partially redundant signals for motor neuron induction in zebrafish.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurônios/fisiologia , Proteínas/genética , Transativadores , Peixe-Zebra/embriologia , Animais , Região Branquial/inervação , Núcleo Celular/patologia , Embrião não Mamífero , Indução Embrionária , Proteínas Hedgehog , Peptídeos e Proteínas de Sinalização Intracelular , Neurônios Motores/fisiologia , Mutação , Sistema Nervoso/embriologia , Proteínas/metabolismo , Rombencéfalo/embriologia , Rombencéfalo/patologia , Medula Espinal , Fator de Crescimento Transformador beta/genética , Proteínas de Peixe-Zebra
13.
Mech Dev ; 86(1-2): 147-50, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10446273

RESUMO

Transcription factors of the TCF/LEF family interact with the Wnt signaling pathway to control transcription of downstream genes (Clevers, H., van de Wetering, M., 1997. TCF/LEF factor earn their wings. Trends Genet. 13, 485-489). We were interested in cloning family members which were expressed in zebrafish neural crest, because Wnt signaling modulates specification of neural crest fate (Dorsky, R.I., Moon, R.T., Raible, D.W., 1998. Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, 370-373). We cloned a zebrafish homolog of lef1 and localized its chromosomal position by radiation hybrid mapping. lef1 is expressed in the neural crest as well as the tailbud and developing mesoderm, and is maternally expressed in zebrafish, unlike mouse and Xenopus homologs. In addition, we cloned two tcf3 genes and a homolog of tcf4, neither of which were strongly expressed in premigratory neural crest.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB , Fatores de Transcrição/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Clonagem Molecular , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero , Feminino , Hibridização In Situ , Fator 1 de Ligação ao Facilitador Linfoide , Camundongos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Fatores de Transcrição TCF , Proteína 1 Semelhante ao Fator 7 de Transcrição , Proteína 2 Semelhante ao Fator 7 de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Xenopus
14.
Int J Dev Biol ; 40(1): 221-7, 1996 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8735932

RESUMO

The systematic isolation and characterization of mutants in Drosophila has enormously facilitated the analysis of molecular mechanisms underlying developmental pathways in the embryo. A similar approach is presently being used to study embryonic development of the zebrafish, which is becoming a mainstream model organism for vertebrate development. With its genetic versatility and sophisticated embryology, zebrafish offers the possibility to rapidly increase our knowledge of vertebrate development and add to what we have learned from other vertebrate model organisms.


Assuntos
Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Clonagem Molecular , Cruzamentos Genéticos , Feminino , Testes Genéticos , Haploidia , Masculino , Modelos Genéticos , Mutagênese , Mutação
18.
Mol Gen Genet ; 235(1): 64-73, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1279374

RESUMO

The PET122 protein is one of three Saccharomyces cerevisiae nuclear gene products required specifically to activate translation of the mitochondrially coded COX3 mRNA. We have previously observed that mutations which remove the carboxy-terminal region of PET122 block translation of the COX3 mRNA but can be suppressed by unlinked nuclear mutations in several genes, two of which have been shown to code for proteins of the small subunit of mitochondrial ribosomes. Here we describe and map two more new genes identified as allele-specific suppressors that compensate for carboxy-terminal truncation of PET122. One of these genes, MRP17, is essential for the expression of all mitochondrial genes and encodes a protein of M(r) 17343. The MRP17 protein is a component of the small ribosomal subunit in mitochondria, as demonstrated by the fact that a missense mutation, mrp17-1, predicted to cause a charge change indeed alters the charge of a mitochondrial ribosomal protein of the expected size. In addition, mrp17-1, in combination with some mutations affecting another mitochondrial ribosomal protein, caused a synthetic defective phenotype. These findings are consistent with a model in which PET122 functionally interacts with the ribosomal small subunit. The second new suppressor gene described here, PET127, encodes a protein too large (M(r) 95900) to be a ribosomal protein and appears to operate by a different mechanism. PET127 is not absolutely required for mitochondrial gene expression and allele-specific suppression of pet122 mutations results from the loss of PET127 function: a pet127 deletion exhibited the same recessive suppressor activity as the original suppressor mutation. These findings suggest the possibility that PET127 could be a novel component of the mitochondrial translation system with a role in promoting accuracy of translational initiation.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Biossíntese de Proteínas , RNA/genética , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transativadores , Alelos , Sequência de Bases , Clonagem Molecular , DNA Fúngico , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Dados de Sequência Molecular , Mutação , RNA Mensageiro/metabolismo , RNA Mitocondrial , Mapeamento por Restrição , Proteínas Ribossômicas/metabolismo , Supressão Genética
19.
EMBO J ; 7(12): 3991-6, 1988 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-3208759

RESUMO

Cin is a member of the hin family of complementing site-specific recombinases which regulate the alternate expression of genes by inverting DNA segments. Common characteristics of this family of recombination systems are the requirement for an enhancer-like element in cis and the specificity for inversely oriented recombination sites on the same DNA molecule. We have isolated two mutants of the Cin recombinase which will efficiently recombine a substrate lacking the enhancer. In addition, these mutant proteins also catalyse efficient recombination between sites in direct orientation or on different DNA molecules. Both mutations are due to single amino acid substitutions at different positions in the protein and the two mutants have slightly different phenotypes. The finding that the loss of enhancer dependence is coupled to a change in topological specificity leads us to conclude that the enhancer determines the specificity of the system for DNA inversion.


Assuntos
Bacteriófagos/genética , DNA Nucleotidiltransferases/genética , Recombinação Genética , Deleção Cromossômica , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Fenótipo , Plasmídeos
20.
Nature ; 372(6506): 563-6, 1994 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-7527496

RESUMO

The concentration of Dorsal protein in the nucleus determines cell fate along the dorsoventral axis of the Drosophila embryo. The dorsal-group genes and the cactus gene are required for production and transmission of a localized signal on the ventral side of the embryo which determines the position of the highest nuclear concentration of Dorsal protein. The ventralizing signal produced in somatic cells is transmitted through the perivitelline space to the integral membrane protein Toll. Inside the embryo it leads to dissociation of the cytoplasmic Dorsal-Cactus complex and subsequent nuclear localization of Dorsal protein. Two components are known to mediate the signal transduction between Toll and Dorsal-Cactus: Pelle, a serine/threonine protein kinase, and Tube, a protein with an unknown biochemical activity. Here we construct gain-of-function alleles of pelle and tube and show that pelle functions downstream of tube. In addition, Pelle and Tube interact directly with one another. We propose that Tube is a direct activator of the protein kinase Pelle.


Assuntos
Proteínas de Drosophila , Drosophila/embriologia , Drosophila/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Receptores de Superfície Celular , Transdução de Sinais , Alelos , Animais , Clonagem Molecular , Ativação Enzimática , Feminino , Hormônios de Inseto/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas/genética , RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae , Receptores Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA