Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 391, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910188

RESUMO

Metal cofactors are essential for catalysis and enable countless conversions in nature. Interestingly, the metal cofactor is not always static but mobile with movements of more than 4 Å. These movements of the metal can have different functions. In the case of the xylose isomerase and medium-chain dehydrogenases, it clearly serves a catalytic purpose. The metal cofactor moves during substrate activation and even during the catalytic turnover. On the other hand, in class II aldolases, the enzymes display resting states and active states depending on the movement of the catalytic metal cofactor. This movement is caused by substrate docking, causing the metal cofactor to take the position essential for catalysis. As these metal movements are found in structurally and mechanistically unrelated enzymes, it has to be expected that this metal movement is more common than currently perceived. KEY POINTS: • Metal ions are essential cofactors that can move during catalysis. • In class II aldolases, the metal cofactors can reside in a resting state and an active state. • In MDR, the movement of the metal cofactor is essential for substrate docking.


Assuntos
Coenzimas , Metais , Metais/metabolismo , Coenzimas/metabolismo , Aldose-Cetose Isomerases/metabolismo , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/genética , Catálise , Oxirredutases/metabolismo , Oxirredutases/química
2.
Chembiochem ; 23(18): e202200212, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35691829

RESUMO

In this review the current state-of-the-art of S-adenosylmethionine (SAM)-dependent methyltransferases and SAM are evaluated. Their structural classification and diversity is introduced and key mechanistic aspects presented which are then detailed further. Then, catalytic SAM as a target for drugs, and approaches to utilise SAM as a cofactor in synthesis are introduced with different supply and regeneration approaches evaluated. The use of SAM analogues are also described. Finally O-, N-, C- and S-MTs, their synthetic applications and potential for compound diversification is given.


Assuntos
Metiltransferases , S-Adenosilmetionina , Metiltransferases/química , S-Adenosilmetionina/química
3.
Chembiochem ; 23(13): e202200147, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35476788

RESUMO

In nature 2-deoxy-D-ribose-5-phosphate aldolase (DERA) catalyses the reversible formation of 2-deoxyribose 5-phosphate from D-glyceraldehyde 3-phosphate and acetaldehyde. In addition, this enzyme can use acetaldehyde as the sole substrate, resulting in a tandem aldol reaction, yielding 2,4,6-trideoxy-D-erythro-hexapyranose, which spontaneously cyclizes. This reaction is very useful for the synthesis of the side chain of statin-type drugs used to decrease cholesterol levels in blood. One of the main challenges in the use of DERA in industrial processes, where high substrate loads are needed to achieve the desired productivity, is its inactivation by high acetaldehyde concentration. In this work, the utility of different variants of Pectobacterium atrosepticum DERA (PaDERA) as whole cell biocatalysts to synthesize 2-deoxyribose 5-phosphate and 2,4,6-trideoxy-D-erythro-hexapyranose was analysed. Under optimized conditions, E. coli BL21 (PaDERA C-His AA C49M) whole cells yields 99 % of both products. Furthermore, this enzyme is able to tolerate 500 mM acetaldehyde in a whole-cell experiment which makes it suitable for industrial applications.


Assuntos
Escherichia coli , Frutose-Bifosfato Aldolase , Acetaldeído , Aldeído Liases/química , Aldeído Liases/genética , Pectobacterium , Ribosemonofosfatos
4.
Biotechnol Bioeng ; 119(2): 493-503, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34796477

RESUMO

Lignin valorization may offer a sustainable approach to achieve a chemical industry that is not completely dependent on fossil resources for the production of aromatics. However, lignin is a recalcitrant, heterogeneous, and complex polymeric compound for which only very few catalysts can act in a predictable and reproducible manner. Laccase is one of those catalysts and has often been referred to as an ideal "green" catalyst, as it is able to oxidize various linkages within lignin to release aromatic products, with the use of molecular oxygen and formation of water as the only side product. The extent and rate of laccase-catalyzed lignin conversion were measured using the label-free analytical technique isothermal titration calorimetry (ITC). IITC provides the molar enthalpy of the reaction, which reflects the extent of conversion and the time-dependent power trace, which reflects the rate of the reaction. Calorimetric assessment of the lignin conversion brought about by various fungal and bacterial laccases in the absence of mediators showed marked differences in the extent and rate of conversion for the different enzymes. Kraft lignin conversion by Trametes versicolor laccase followed Michaelis-Menten kinetics and was characterized by the following thermodynamic and kinetic parameters ΔHITC = -(2.06 ± 0.06)·103 kJ mol-1 , KM = 6.6 ± 1.2 µM and Vmax = 0.30 ± 0.02 U/mg at 25°C and pH 6.5. We envision calorimetric techniques as important tools for the development of enzymatic lignin valorization strategies.


Assuntos
Calorimetria/métodos , Lacase , Lignina , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinética , Lacase/química , Lacase/metabolismo , Lignina/análise , Lignina/química , Lignina/metabolismo , Polyporaceae/enzimologia , Polyporaceae/genética
5.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012467

RESUMO

Nanoparticles (NPs) have high multifunctional potential to simultaneously enhance implant osseointegration and prevent infections caused by antibiotic-resistant bacteria. Here, we present the first report on using plasma electrolytic oxidation (PEO) to incorporate different combinations of reduced graphene oxide (rGO) and silver (Ag) NPs on additively manufactured geometrically ordered volume-porous titanium implants. The rGO nanosheets were mainly embedded parallel with the PEO surfaces. However, the formation of 'nano-knife' structures (particles embedded perpendicularly to the implant surfaces) was also found around the pores of the PEO layers. Enhanced in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus was observed for the rGO+Ag-containing surfaces compared to the PEO surfaces prepared only with AgNPs. This was caused by a significant improvement in the generation of reactive oxygen species, higher levels of Ag+ release, and the presence of rGO 'nano-knife' structures. In addition, the implants developed in this study stimulated the metabolic activity and osteogenic differentiation of MC3T3-E1 preosteoblast cells compared to the PEO surfaces without nanoparticles. Therefore, the PEO titanium surfaces incorporating controlled levels of rGO+Ag nanoparticles have high clinical potential as multifunctional surfaces for 3D-printed orthopaedic implants.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Grafite , Humanos , Nanopartículas Metálicas/química , Osteogênese , Porosidade , Impressão Tridimensional , Prata/química , Prata/farmacologia , Titânio/química , Titânio/farmacologia
6.
Angew Chem Int Ed Engl ; 61(49): e202213338, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36214476

RESUMO

Regulation of enzyme activity is vital for living organisms. In metalloenzymes, far-reaching rearrangements of the protein scaffold are generally required to tune the metal cofactor's properties by allosteric regulation. Here structural analysis of hydroxyketoacid aldolase from Sphingomonas wittichii RW1 (SwHKA) revealed a dynamic movement of the metal cofactor between two coordination spheres without protein scaffold rearrangements. In its resting state configuration (M2+ R ), the metal constitutes an integral part of the dimer interface within the overall hexameric assembly, but sterical constraints do not allow for substrate binding. Conversely, a second coordination sphere constitutes the catalytically active state (M2+ A ) at 2.4 Šdistance. Bidentate coordination of a ketoacid substrate to M2+ A affords the overall lowest energy complex, which drives the transition from M2+ R to M2+ A . While not described earlier, this type of regulation may be widespread and largely overlooked due to low occupancy of some of its states in protein crystal structures.


Assuntos
Metaloproteínas , Metaloproteínas/química , Metais , Frutose-Bifosfato Aldolase/metabolismo , Regulação Alostérica
7.
Small ; 17(24): e2100706, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33978318

RESUMO

Despite the potential of small-scale pillars of black titanium (bTi) for killing the bacteria and directing the fate of stem cells, not much is known about the effects of the pillars' design parameters on their biological properties. Here, three distinct bTi surfaces are designed and fabricated through dry etching of the titanium, each featuring different pillar designs. The interactions of the surfaces with MC3T3-E1 preosteoblast cells and Staphylococcus aureus bacteria are then investigated. Pillars with different heights and spatial organizations differently influence the morphological characteristics of the cells, including their spreading area, aspect ratio, nucleus area, and cytoskeletal organization. The preferential formation of focal adhesions (FAs) and their size variations also depend on the type of topography. When the pillars are neither fully separated nor extremely tall, the colocalization of actin fibers and FAs as well as an enhanced matrix mineralization are observed. However, the killing efficiency of these pillars against the bacteria is not as high as that of fully separated and tall pillars. This study provides a new perspective on the dual-functionality of bTi surfaces and elucidates how the surface design and fabrication parameters can be used to achieve a surface topography with balanced bactericidal and osteogenic properties.


Assuntos
Substitutos Ósseos , Titânio , Osteoblastos , Osteogênese , Propriedades de Superfície
8.
Appl Microbiol Biotechnol ; 105(16-17): 6159-6172, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34350478

RESUMO

Oleate hydratase catalyses the addition of water to the CC double bond of oleic acid to produce (R)-10-hydroxystearic acid. The enzyme requires an FAD cofactor that functions to optimise the active site structure. A wide range of unsaturated fatty acids can be hydrated at the C10 and in some cases the C13 position. The substrate scope can be expanded using 'decoy' small carboxylic acids to convert small chain alkenes to secondary alcohols, albeit at low conversion rates. Systematic protein engineering and directed evolution to widen the substrate scope and increase the conversion rate is possible, supported by new high throughput screening assays that have been developed. Multi-enzyme cascades allow the formation of a wide range of products including keto-fatty acids, secondary alcohols, secondary amines and α,ω-dicarboxylic acids. KEY POINTS: • Phylogenetically distinct oleate hydratases may exhibit mechanistic differences. • Protein engineering to improve productivity and substrate scope is possible. • Multi-enzymatic cascades greatly widen the product portfolio.


Assuntos
Hidroliases , Ácido Oleico , Catálise , Domínio Catalítico , Ácidos Graxos Insaturados , Hidroliases/genética , Hidroliases/metabolismo
9.
J Biol Inorg Chem ; 25(8): 1129-1138, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33113038

RESUMO

Chlorite dismutase is a heme enzyme that catalyzes the conversion of the toxic compound ClO2- (chlorite) to innocuous Cl- and O2. The reaction is a very rare case of enzymatic O-O bond formation, which has sparked the interest to elucidate the reaction mechanism using pre-steady-state kinetics. During stopped-flow experiments, spectroscopic and structural changes of the enzyme were observed in the absence of a substrate in the time range from milliseconds to minutes. These effects are a consequence of illumination with UV-visible light during the stopped-flow experiment. The changes in the UV-visible spectrum in the initial 200 s of the reaction indicate a possible involvement of a ferric superoxide/ferrous oxo or ferric hydroxide intermediate during the photochemical inactivation. Observed EPR spectral changes after 30 min reaction time indicate the loss of the heme and release of iron during the process. During prolonged illumination, the oligomeric state of the enzyme changes from homo-pentameric to monomeric with subsequent protein precipitation. Understanding the effects of UV-visible light illumination induced changes of chlorite dismutase will help us to understand the nature and mechanism of photosensitivity of heme enzymes in general. Furthermore, previously reported stopped-flow data of chlorite dismutase and potentially other heme enzymes will need to be re-evaluated in the context of the photosensitivity. Illumination of recombinantly expressed Azospira oryzae Chlorite dismutase (AoCld) with a high-intensity light source, common in stopped-flow equipment, results in disruption of the bond between FeIII and the axial histidine. This leads to the enzyme losing its heme cofactor and changing its oligomeric state as shown by spectroscopic changes and loss of activity.


Assuntos
Heme/metabolismo , Luz , Oxirredutases/metabolismo , Cinética , Oxirredutases/química , Multimerização Proteica , Estrutura Quaternária de Proteína , Rhodocyclaceae/enzimologia
10.
J Biol Inorg Chem ; 25(5): 827, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32472240

RESUMO

In the original article published, in the gy value (column) of the H2O/OH-species (row) of Table 2 was mistakenly given as "1.18" and the correct value is "2.18".

11.
J Biol Inorg Chem ; 25(4): 609-620, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32246282

RESUMO

Chlorite dismutase is a unique heme enzyme that catalyzes the conversion of chlorite to chloride and molecular oxygen. The enzyme is highly specific for chlorite but has been known to bind several anionic and neutral ligands to the heme iron. In a pH study, the enzyme changed color from red to green in acetate buffer pH 5.0. The cause of this color change was uncovered using UV-visible and EPR spectroscopy. Chlorite dismutase in the presence of acetate showed a change of the UV-visible spectrum: a redshift and hyperchromicity of the Soret band from 391 to 404 nm and a blueshift of the charge transfer band CT1 from 647 to 626 nm. Equilibrium binding titrations with acetate resulted in a dissociation constant of circa 20 mM at pH 5.0 and 5.8. EPR spectroscopy showed that the acetate bound form of the enzyme remained high spin S = 5/2, however with an apparent change of the rhombicity and line broadening of the spectrum. Mutagenesis of the proximal arginine Arg183 to alanine resulted in the loss of the ability to bind acetate. Acetate was discovered as a novel ligand to chlorite dismutase, with evidence of direct binding to the heme iron. The green color is caused by a blueshift of the CT1 band that is characteristic of the high spin ferric state of the enzyme. Any weak field ligand that binds directly to the heme center may show the red to green color change, as was indeed the case for fluoride.


Assuntos
Acetatos/química , Cor , Hemeproteínas/química , Oxirredutases/química , Acetatos/metabolismo , Sítios de Ligação , Hemeproteínas/isolamento & purificação , Hemeproteínas/metabolismo , Oxirredutases/metabolismo , Rhodocyclaceae/enzimologia
12.
Nat Chem Biol ; 14(8): 794-800, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29942079

RESUMO

Carbapenems, a family of ß-lactam antibiotics, are among the most powerful bactericidal compounds in clinical use. However, as rational engineering of native carbapenem-producing microbes is not currently possible, the present carbapenem supply relies upon total chemical synthesis of artificial carbapenem derivatives. To enable access to the full diversity of natural carbapenems, we have engineered production of a simple carbapenem antibiotic within Escherichia coli. By increasing concentrations of precursor metabolites and identifying a reducing cofactor of a bottleneck enzyme, we improved productivity by 60-fold over the minimal pathway and surpassed reported titers obtained from carbapenem-producing Streptomyces species. We stabilized E. coli metabolism against antibacterial effects of the carbapenem product by artificially inhibiting membrane synthesis, which further increased antibiotic productivity. As all known naturally occurring carbapenems are derived from a common intermediate, our engineered strain provides a platform for biosynthesis of tailored carbapenem derivatives in a genetically tractable and fast-growing species.


Assuntos
Carbapenêmicos/biossíntese , Escherichia coli/metabolismo , Engenharia Metabólica , Carbapenêmicos/química
13.
Appl Microbiol Biotechnol ; 104(13): 5801-5812, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32358760

RESUMO

Oleate hydratases (Ohys, EC 4.2.1.53) are a class of enzymes capable of selective water addition reactions to a broad range of unsaturated fatty acids leading to the respective chiral alcohols. Much research was dedicated to improving the applications of existing Ohys as well as to the identification of undescribed Ohys with potentially novel properties. This study focuses on the latter by exploring the genus Rhodococcus for its plenitude of oleate hydratases. Three different Rhodococcus clades showed the presence of oleate hydratases whereby each clade was represented by a specific oleate hydratase family (HFam). Phylogenetic and sequence analyses revealed HFam-specific patterns amongst conserved amino acids. Oleate hydratases from two Rhodococcus strains (HFam 2 and 3) were heterologously expressed in Escherichia coli and their substrate scope investigated. Here, both enzymes showed a complementary behaviour towards sterically demanding and multiple unsaturated fatty acids. Furthermore, this study includes the characterisation of the newly discovered Rhodococcus pyridinivorans Ohy. The steady-state kinetics of R. pyridinivorans Ohy was measured using a novel coupled assay based on the alcohol dehydrogenase and NAD+-dependent oxidation of 10-hydroxystearic acid.


Assuntos
Proteínas de Bactérias/metabolismo , Hidroliases/metabolismo , Ácido Oleico/metabolismo , Rhodococcus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Genoma Bacteriano/genética , Hidroliases/química , Hidroliases/genética , Concentração de Íons de Hidrogênio , Cinética , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodococcus/classificação , Rhodococcus/genética , Especificidade por Substrato , Temperatura
14.
Angew Chem Int Ed Engl ; 59(28): 11234-11239, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32267054

RESUMO

The amino-terminal copper and nickel/N-terminal site (ATCUN/NTS) present in proteins and bioactive peptides exhibits high affinity towards CuII ions and have been implicated in human copper physiology. Little is known, however, about the rate and exact mechanism of formation of such complexes. We used the stopped-flow and microsecond freeze-hyperquenching (MHQ) techniques supported by steady-state spectroscopic and electrochemical data to demonstrate the formation of partially coordinated intermediate CuII complexes formed by glycyl-glycyl-histidine (GGH) peptide, the simplest ATCUN/NTS model. One of these novel intermediates, characterized by two-nitrogen coordination, t1/2 ≈100 ms at pH 6.0 and the ability to maintain the CuII /CuI redox pair is the best candidate for the long-sought reactive species in extracellular copper transport.


Assuntos
Cobre/química , Transporte de Íons , Proteínas/química , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície
15.
Angew Chem Int Ed Engl ; 59(24): 9340-9344, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32180306

RESUMO

Supramolecular encapsulation is known to alter chemical properties of guest molecules. We have applied this strategy of molecular encapsulation to temporally control the catalytic activity of a stable copper(I)-carbene catalyst. Encapsulation of the copper(I)-carbene catalyst by the supramolecular host cucurbit[7]uril (CB[7]) resulted in the complete inactivation of a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The addition of a chemical signal achieved the near instantaneous activation of the catalyst, by releasing the catalyst from the inhibited CB[7] catalyst complex. To broaden the scope of our on-demand CuAAC reaction, we demonstrated the protein labeling of vinculin with the copper(I)-carbene catalyst, to inhibit its activity by encapsulation with CB[7] and to initiate labeling at any moment by adding a specific signal molecule. Ultimately, this strategy allows for temporal control over copper-catalyzed click chemistry, on small molecules as well as protein targets.

16.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737350

RESUMO

LeLoir glycosyltransferases are important biocatalysts for the production of glycosidic bonds in natural products, chiral building blocks, and pharmaceuticals. Trehalose transferase (TreT) is of particular interest since it catalyzes the stereo- and enantioselective α,α-(1→1) coupling of a nucleotide sugar donor and monosaccharide acceptor for the synthesis of disaccharide derivatives. Heterologously expressed thermophilic trehalose transferases were found to be intrinsically aggregation prone and are mainly expressed as catalytically active inclusion bodies in Escherichia coli To disfavor protein aggregation, the thermostable protein mCherry was explored as a fluorescent protein tag. The fusion of mCherry to trehalose transferase from Pyrobaculum yellowstonensis (PyTreT) demonstrated increased protein solubility. Chaotropic agents like guanidine or the divalent cations Mn(II), Ca(II), and Mg(II) enhanced the enzyme activity of the fusion protein. The thermodynamic equilibrium constant, Keq, for the reversible synthesis of trehalose from glucose and a nucleotide sugar was determined in both the synthesis and hydrolysis directions utilizing UDP-glucose and ADP-glucose, respectively. UDP-glucose was shown to achieve higher conversions than ADP-glucose, highlighting the importance of the choice of nucleotide sugars for LeLoir glycosyltransferases under thermodynamic control.IMPORTANCE The heterologous expression of proteins in Escherichia coli is of great relevance for their functional and structural characterization and applications. However, the formation of insoluble inclusion bodies is observed in approximately 70% of all cases, and the subsequent effects can range from reduced soluble protein yields to a complete failure of the expression system. Here, we present an efficient methodology for the production and analysis of a thermostable, aggregation-prone trehalose transferase (TreT) from Pyrobaculum yellowstonensis via its fusion with mCherry as a thermostable fluorescent protein tag. This fusion strategy allowed for increased enzyme stability and solubility and could be applied to other (thermostable) proteins, allowing rapid visualization and quantification of the mCherry-fused protein of interest. Finally, we have demonstrated that the enzymatic synthesis of trehalose from glucose and a nucleotide sugar is reversible by approaching the thermodynamic equilibrium in both the synthesis and hydrolysis directions. Our results show that uridine establishes an equilibrium constant which is more in favor of the product trehalose than when adenosine is employed as the nucleotide under identical conditions. The influence of different nucleotides on the reaction can be generalized for all LeLoir glycosyltransferases under thermodynamic control as the position of the equilibrium depends solely on the reaction conditions and is not affected by the nature of the catalyst.


Assuntos
Estabilidade Enzimática , Proteínas Recombinantes de Fusão/metabolismo , Transferases/metabolismo , Trealose/metabolismo , Adenosina Difosfato Glucose , Ânions , Catálise , Cátions , Ativação Enzimática , Estabilidade Enzimática/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos , Glucose/metabolismo , Glicosiltransferases/metabolismo , Cinética , Agregados Proteicos , Pyrobaculum/enzimologia , Pyrobaculum/genética , Proteínas Recombinantes de Fusão/genética , Solubilidade , Transferases/genética , Uridina Difosfato Glucose
17.
Nitric Oxide ; 89: 22-31, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31002874

RESUMO

The oxygen-independent nitrate-nitrite-nitric oxide (NO) pathway is considered as a substantial source of NO in mammals. Dietary nitrate/nitrite are distributed throughout the body and reduced to NO by the action of various enzymes. The intermembrane spaced (IMS), molybdenum cofactor-dependent sulfite oxidase (SO) was shown to catalyze such a nitrite reduction. In this study we asked whether the primary function of SO - sulfite oxidation - and its novel function - nitrite reduction - impact each other. First, we utilized benzyl viologen as artificial electron donor to investigate steady state NO synthesis by SO and found fast (kcat = 14 s-1) nitrite reduction of SO full-length and its isolated molybdenum domain at pH 6.5. Next, we determined the impact of nitrite on pre-steady state kinetics in SO catalysis and identified nitrite as a pH-dependent inhibitor of SO reductive and oxidative half reaction. Finally, we report on the time-dependent formation of the paramagnetic Mo(V) species following nitrite reduction and demonstrate that sulfite inhibits nitrite reduction. In conclusion, we propose a pH-dependent reciprocal regulation of sulfite oxidation and nitrite reduction by each substrate, thus facilitating quick responses to hypoxia induced changes in the IMS, which may function in protecting the cell from reactive oxygen species production.


Assuntos
Proteínas Mitocondriais/química , Nitritos/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Sulfitos/química , Benzil Viologênio/química , Catálise , Escherichia coli/genética , Heme/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Oxirredução
18.
Nanotechnology ; 30(20): 20LT01, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-30802893

RESUMO

Recent discoveries have shown that nanopatterns with feature sizes ≤100 nm could direct stem cell fate or kill bacteria. These effects could be used to develop orthopedic implants with improved osseointegration and decreased chance of implant-associated infections. The quest for osteogenic and bactericidal nanopatterns is ongoing but no controlled nanopatterns with dual osteogenic and bactericidal functionalities have been found yet. In this study, electron beam induced deposition (EBID) was used for accurate and reproducible decoration of silicon surfaces with four different types of nanopatterns. The features used in the first two nanopatterns (OST1 and OST2) were derived from osteogenic nanopatterns known to induce osteogenic differentiation of stem cells in the absence of osteogenic supplements. Two modifications of these nanopatterns were also included (OST2-SQ, OST2-H90) to study the effects of controlled disorder and lower nanopillar heights. An E. coli K-12 strain was used for probing the response of bacteria to the nanopatterns. Three nanopatterns (OST2, OST2-SQ, and OST2-H90) exhibited clear bactericidal behavior as evidenced by severely damaged cells and disrupted formation of extracellular polymeric substance. These findings indicate that controlled nanopatterns with features derived from osteogenic ones can have bactericidal activity and that EBID represents an enabling nanotechnology to achieve (multi)functional nanopatterns for bone implants.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Escherichia coli K12/efeitos dos fármacos , Osteogênese , Animais , Antibacterianos/química , Biomarcadores/química , Diferenciação Celular/efeitos dos fármacos , Humanos , Nanoestruturas/química , Silício/química , Propriedades de Superfície
19.
Int J Mol Sci ; 20(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561555

RESUMO

The application of purified enzymes as well as whole-cell biocatalysts in synthetic organic chemistry is becoming more and more popular, and both academia and industry are keen on finding and developing novel enzymes capable of performing otherwise impossible or challenging reactions. The diverse genus Rhodococcus offers a multitude of promising enzymes, which therefore makes it one of the key bacterial hosts in many areas of research. This review focused on the broad utilization potential of the genus Rhodococcus in organic chemistry, thereby particularly highlighting the specific enzyme classes exploited and the reactions they catalyze. Additionally, close attention was paid to the substrate scope that each enzyme class covers. Overall, a comprehensive overview of the applicability of the genus Rhodococcus is provided, which puts this versatile microorganism in the spotlight of further research.


Assuntos
Técnicas de Química Sintética , Rhodococcus/metabolismo , Biocatálise , Catálise , Hidrolases/metabolismo , Redes e Vias Metabólicas , Nitrilas/metabolismo , Oxirredução , Oximas/metabolismo , Compostos de Enxofre
20.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652818

RESUMO

Enzymes are nature's catalyst of choice for the highly selective and efficient coupling of carbohydrates. Enzymatic sugar coupling is a competitive technology for industrial glycosylation reactions, since chemical synthetic routes require extensive use of laborious protection group manipulations and often lack regio- and stereoselectivity. The application of Leloir glycosyltransferases has received considerable attention in recent years and offers excellent control over the reactivity and selectivity of glycosylation reactions with unprotected carbohydrates, paving the way for previously inaccessible synthetic routes. The development of nucleotide recycling cascades has allowed for the efficient production and reuse of nucleotide sugar donors in robust one-pot multi-enzyme glycosylation cascades. In this way, large glycans and glycoconjugates with complex stereochemistry can be constructed. With recent advances, LeLoir glycosyltransferases are close to being applied industrially in multi-enzyme, programmable cascade glycosylations.


Assuntos
Biocatálise , Técnicas de Química Sintética/métodos , Glicoconjugados/síntese química , Glicosiltransferases/metabolismo , Glicosiltransferases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA