Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 163(7): 1692-701, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687357

RESUMO

Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM.


Assuntos
Transporte Ativo do Núcleo Celular , Capsídeo/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Vesículas Transportadoras/ultraestrutura , Animais , Capsídeo/ultraestrutura , Chlorocebus aethiops , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Herpesvirus Humano 1/metabolismo , Herpesvirus Suídeo 1/metabolismo , Membrana Nuclear/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dímeros de Pirimidina , Espalhamento a Baixo Ângulo , Vesículas Transportadoras/metabolismo , Células Vero , Proteínas Virais/química , Proteínas Virais/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(11): 4804-4809, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30808803

RESUMO

Correlative light and electron cryo-microscopy (cryo-CLEM) combines information from the specific labeling of fluorescence cryo-microscopy (cryo-FM) with the high resolution in environmental context of electron cryo-microscopy (cryo-EM). Exploiting super-resolution methods for cryo-FM is advantageous, as it enables the identification of rare events within the environmental background of cryo-EM at a sensitivity and resolution beyond that of conventional methods. However, due to the need for relatively high laser intensities, current super-resolution cryo-CLEM methods require cryo-protectants or support films which can severely reduce image quality in cryo-EM and are not compatible with many samples, such as mammalian cells. Here, we introduce cryogenic super-resolution optical fluctuation imaging (cryo-SOFI), a low-dose super-resolution imaging scheme based on the SOFI principle. As cryo-SOFI does not require special sample preparation, it is fully compatible with conventional cryo-EM specimens, and importantly, it does not affect the quality of cryo-EM imaging. By applying cryo-SOFI to a variety of biological application examples, we demonstrate resolutions up to ∼135 nm, an improvement of up to three times compared with conventional cryo-FM, while maintaining the specimen in a vitrified state for subsequent cryo-EM. Cryo-SOFI presents a general solution to the problem of specimen devitrification in super-resolution cryo-CLEM. It does not require a complex optical setup and can easily be implemented in any existing cryo-FM system.


Assuntos
Microscopia Crioeletrônica/métodos , Animais , Linhagem Celular , Retículo Endoplasmático/ultraestrutura , Humanos , Microscopia de Fluorescência , Mitocôndrias/ultraestrutura
3.
Biol Cell ; 108(9): 245-58, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27225383

RESUMO

Correlative light and electron microscopy (CLEM) has become a powerful tool in life sciences. Particularly cryo-CLEM, the combination of fluorescence cryo-microscopy (cryo-FM) permitting for non-invasive specific multi-colour labelling, with electron cryo-microscopy (cryo-EM) providing the undisturbed structural context at a resolution down to the Ångstrom range, has enabled a broad range of new biological applications. Imaging rare structures or events in crowded environments, such as inside a cell, requires specific fluorescence-based information for guiding cryo-EM data acquisition and/or to verify the identity of the structure of interest. Furthermore, cryo-CLEM can provide information about the arrangement of specific proteins in the wider structural context of their native nano-environment. However, a major obstacle of cryo-CLEM currently hindering many biological applications is the large resolution gap between cryo-FM (typically in the range of ∼400 nm) and cryo-EM (single nanometre to the Ångstrom range). Very recently, first proof of concept experiments demonstrated the feasibility of super-resolution cryo-FM imaging and the correlation with cryo-EM. This opened the door towards super-resolution cryo-CLEM, and thus towards direct correlation of structural details from both imaging modalities.


Assuntos
Microscopia Crioeletrônica/métodos , Microscopia de Fluorescência/métodos , Animais , Microscopia Crioeletrônica/instrumentação , Fluorescência , Humanos , Microscopia de Fluorescência/instrumentação , Modelos Moleculares , Imagem Óptica/instrumentação , Imagem Óptica/métodos
4.
Nano Lett ; 14(7): 4171-5, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24884378

RESUMO

We introduce a super-resolution technique for fluorescence cryo-microscopy based on photoswitching of standard genetically encoded fluorescent marker proteins in intact mammalian cells at low temperature (81 K). Given the limit imposed by the lack of cryo-immersion objectives, current applications of fluorescence cryo-microscopy to biological specimens achieve resolutions between 400-500 nm only. We demonstrate that the single molecule characteristics of reversible photobleaching of mEGFP and mVenus at liquid nitrogen temperature are suitable for the basic concept of single molecule localization microscopy. This enabled us to perform super-resolution imaging of vitrified biological samples and to visualize structures in unperturbed fast frozen cells for the first time with a structural resolution of ∼125 nm (average single molecule localization accuracy ∼40 nm), corresponding to a 3-5 fold resolution improvement.


Assuntos
Corantes Fluorescentes/análise , Proteínas Luminescentes/análise , Microscopia de Fluorescência/instrumentação , Animais , Células COS , Chlorocebus aethiops , Temperatura Baixa , Desenho de Equipamento , Congelamento , Vitrificação
5.
Nat Microbiol ; 9(7): 1842-1855, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38918469

RESUMO

The viral nuclear egress complex (NEC) allows herpesvirus capsids to escape from the nucleus without compromising the nuclear envelope integrity. The NEC lattice assembles on the inner nuclear membrane and mediates the budding of nascent nucleocapsids into the perinuclear space and their subsequent release into the cytosol. Its essential role makes it a potent antiviral target, necessitating structural information in the context of a cellular infection. Here we determined structures of NEC-capsid interfaces in situ using electron cryo-tomography, showing a substantial structural heterogeneity. In addition, while the capsid is associated with budding initiation, it is not required for curvature formation. By determining the NEC structure in several conformations, we show that curvature arises from an asymmetric assembly of disordered and hexagonally ordered lattice domains independent of pUL25 or other viral capsid vertex components. Our results advance our understanding of the mechanism of nuclear egress in the context of a living cell.


Assuntos
Capsídeo , Núcleo Celular , Microscopia Crioeletrônica , Membrana Nuclear , Liberação de Vírus , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Humanos , Membrana Nuclear/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Nucleocapsídeo/metabolismo , Tomografia com Microscopia Eletrônica , Proteínas Virais/metabolismo , Proteínas Virais/genética , Herpesviridae/fisiologia , Herpesviridae/genética
6.
J Struct Biol ; 177(2): 193-201, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22210307

RESUMO

Soft X-ray cryo-microscopy/tomography of vitreous samples is becoming a valuable tool in structural cell biology. Within the 'water-window' wavelength region (2.34-4.37nm), it provides absorption contrast images with high signal to noise ratio and resolution of a few tens of nanometer. Soft X-rays with wavelengths close to the K-absorption edge of oxygen penetrate biological samples with thicknesses in the micrometer range. Here, we report on the application of a recently established extension of the transmission soft X-ray cryo-microscope (HZB TXM) at the beamline U41-XM of the BESSY II electron storage ring by an in-column epi-fluorescence and reflected light cryo-microscope. We demonstrate the new capability for correlative fluorescence and soft X-ray cryo-microscopy/tomography of this instrument along a typical life science experimental approach - the correlation of a fluorophore-tagged protein (pUL34-GFP of pseudorabies virus, PrV, the nuclear membrane-anchored component of the nuclear egress complex of the Herpesviridae which interacts with viral pUL31) in PrV pUL34-GFP/pUL31 coexpressing mammalian cells, with virus-induced vesicular structures in the nucleus, expanding the nucleoplasmic reticulum. Taken together, our results demonstrate new possibilities to study the role of specific proteins in substructures of adherent cells, especially of the nucleus in toto, accessible to electron microscopy in thinned samples only.


Assuntos
Microscopia de Fluorescência/métodos , Tomografia por Raios X/métodos , Animais , Artefatos , Adesão Celular , Células Cultivadas , Criopreservação , Análise de Fourier , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional , Proteínas Recombinantes de Fusão/metabolismo , Análise de Célula Única/métodos , Suínos , Proteínas Virais/metabolismo , Vitrificação
7.
J Virol ; 84(9): 4469-80, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20181688

RESUMO

The glycoprotein gO (UL74) of human cytomegalovirus (HCMV) forms a complex with gH/gL. Virus mutants with a deletion of gO show a defect in secondary envelopment with the consequence that virus spread is restricted to a cell-associated pathway. Here we report that the positional homolog of HCMV gO, m74 of mouse CMV (MCMV), codes for a glycosylated protein which also forms a complex with gH (M75). m74 knockout mutants of MCMV show the same spread phenotype as gO knockout mutants of HCMV, namely, a shift from supernatant-driven to cell-associated spread. We could show that this phenotype is due to a reduction of infectious virus particles in cell culture supernatants. m74 knockout mutants enter fibroblasts via an energy-dependent and pH-sensitive pathway, whereas in the presence of an intact m74 gene product, entry is neither energy dependent nor pH sensitive. This entry phenotype is shared by HCMV expressing or lacking gO. Our data indicate that the m74 and UL74 gene products both codetermine CMV spread and CMV entry into cells. We postulate that MCMV, like HCMV, expresses alternative gH/gL complexes which govern cell-to-cell spread of the virus.


Assuntos
Glicoproteínas de Membrana/fisiologia , Muromegalovirus/fisiologia , Proteínas do Envelope Viral/fisiologia , Internalização do Vírus , Animais , Células Cultivadas , Meios de Cultura , Citomegalovirus/genética , Citomegalovirus/fisiologia , Fibroblastos/virologia , Técnicas de Inativação de Genes , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Muromegalovirus/genética , Ligação Proteica , Multimerização Proteica , Proteínas do Envelope Viral/genética , Carga Viral , Ensaio de Placa Viral
8.
Acta Crystallogr D Struct Biol ; 73(Pt 6): 488-495, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28580910

RESUMO

The recent resolution revolution in cryo-EM has led to a massive increase in demand for both time on high-end cryo-electron microscopes and access to cryo-electron microscopy expertise. In anticipation of this demand, eBIC was set up at Diamond Light Source in collaboration with Birkbeck College London and the University of Oxford, and funded by the Wellcome Trust, the UK Medical Research Council (MRC) and the Biotechnology and Biological Sciences Research Council (BBSRC) to provide access to high-end equipment through peer review. eBIC is currently in its start-up phase and began by offering time on a single FEI Titan Krios microscope equipped with the latest generation of direct electron detectors from two manufacturers. Here, the current status and modes of access for potential users of eBIC are outlined. In the first year of operation, 222 d of microscope time were delivered to external research groups, with 95 visits in total, of which 53 were from unique groups. The data collected have generated multiple high- to intermediate-resolution structures (2.8-8 Å), ten of which have been published. A second Krios microscope is now in operation, with two more due to come online in 2017. In the next phase of growth of eBIC, in addition to more microscope time, new data-collection strategies and sample-preparation techniques will be made available to external user groups. Finally, all raw data are archived, and a metadata catalogue and automated pipelines for data analysis are being developed.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Animais , Humanos , Imageamento Tridimensional/métodos , Pesquisa , Manejo de Espécimes , Reino Unido
9.
Cell Rep ; 13(12): 2645-52, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26711332

RESUMO

Although nucleo-cytoplasmic transport is typically mediated through nuclear pore complexes, herpesvirus capsids exit the nucleus via a unique vesicular pathway. Together, the conserved herpesvirus proteins pUL31 and pUL34 form the heterodimeric nuclear egress complex (NEC), which, in turn, mediates the formation of tight-fitting membrane vesicles around capsids at the inner nuclear membrane. Here, we present the crystal structure of the pseudorabies virus NEC. The structure revealed that a zinc finger motif in pUL31 and an extensive interaction network between the two proteins stabilize the complex. Comprehensive mutational analyses, characterized both in situ and in vitro, indicated that the interaction network is not redundant but rather complementary. Fitting of the NEC crystal structure into the recently determined cryoEM-derived hexagonal lattice, formed in situ by pUL31 and pUL34, provided details on the molecular basis of NEC coat formation and inner nuclear membrane remodeling.


Assuntos
Transporte Ativo do Núcleo Celular , Herpesviridae/química , Membrana Nuclear/química , Proteínas Nucleares/química , Proteínas Virais/química , Cristalografia por Raios X , Herpesviridae/metabolismo , Modelos Moleculares , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Proteínas Virais/metabolismo , Dedos de Zinco
10.
Photosynth Res ; 72(3): 255-62, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-16228524

RESUMO

A brief reversible lowering of chlorophyll fluorescence yield (so called low-waves) immediately after application of a saturating light pulse in parallel with a short-time enhancement of the P700 oxidation level was observed in the green alga Haematococcus pluvialis. The phenomenon occurred in the steady-state time region of fluorescence induction kinetics under mild acidic conditions, and was eliminated by bicarbonate. Shortly after expression of low-waves, the photosynthetic oxygen evolution rate decreased and the non-photochemical chlorophyll fluorescence quenching component increased. The enhancement of the non-photochemical chlorophyll fluorescence quenching component was nigericin-sensitive indicating its dependence on the transthylakoid proton gradient. On the other hand, the formation of low-waves was not removed by the uncoupler. Only when bicarbonate was applied additionally, the reversible short-term decrease in fluorescence yield following each saturating light flash was abolished. Dimethyl-4-nitroso-aniline as an artificial electron acceptor of Photosystem I did not limit the brief drops in fluorescence. However, formate as a competitive inhibitor of bicarbonate binding in Photosystem II induced low-wave formation. Therefore, our results suggest that low-waves in chlorophyll fluorescence kinetics indicate deprivation of bicarbonate in the reaction centre of Photosystem II.

11.
Curr Opin Chem Biol ; 20: 86-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24951858

RESUMO

Studying biological structures with fine details does not only require a microscope with high resolution, but also a sample preparation process that preserves the structures in a near-native state. Live-cell imaging is restricted mostly to the field of light microscopy. For studies requiring much higher resolution, fast freezing techniques (vitrification) are successfully used to immobilize the sample in a near-native state for imaging with electron and X-ray cryo-microscopy. Fluorescence cryo-microscopy combines imaging of vitrified samples with the advantages of fluorescence labeling of biological structures. Technical considerations as well as the behavior of fluorophores at low temperatures have to be taken into account for developing or adapting super-resolution methods under cryo conditions to exploit the full potential of this technique.


Assuntos
Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Corantes Fluorescentes/química , Humanos , Temperatura
12.
Methods Cell Biol ; 124: 179-216, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25287842

RESUMO

Soft X-ray cryo-microscopy/tomography with its extraordinary capability to map vitreous cells with high absorption contrast in their full three-dimensional extent, and at a resolution exceeding super-resolution fluorescence microscopy, is a valuable tool for integrative structural cell biology. Focusing on cell biological applications, its ongoing methodological development gained momentum by combining it with fluorescence cryo-microscopy, thus correlating highly resolved structural and specific information in situ. In this chapter, we provide a basic description of the techniques, as well as an overview of equipment and methods available to carry out correlative soft X-ray cryo-tomography experiments on frozen-hydrated cells grown on a planar support. Our aim here is to suggest ways that biologically representative data can be recorded to the highest possible resolution, while also keeping in mind the limitations of the technique during data acquisition and analysis. We have written from our perspective as electron cryo-microscopists/structural cell biologists who have experience using correlative fluorescence/cryoXM/T at synchrotron beamlines presently available for external users in Europe (HZB TXM at U41-FSGM, BESSY II, Berlin/Germany; Carl Zeiss TXMs at MISTRAL, ALBA, Barcelona/Spain, and B24, DLS, Oxfordshire, UK).


Assuntos
Análise de Célula Única/métodos , Animais , Adesão Celular , Células Cultivadas , Criopreservação , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência/métodos , Tomografia por Raios X/métodos
13.
Curr Opin Virol ; 5: 42-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24553093

RESUMO

Electron cryo tomography (cryoET) is an ideal technique to study virus-host interactions at molecular resolution. Imaging of biological specimens in a frozen-hydrated state assures a close to native environment. Various virus-host cell interactions have been analysed in this way, with the herpesvirus 'life' cycle being the most comprehensively studied. The data obtained were further integrated with fluorescence and soft X-ray cryo microscopy data applied on experimental systems covering a wide range of biological complexity. This hybrid approach combines dynamic with static imaging and spans a resolution range from micrometres to angstroms. Along selected aspects of the herpesvirus replication cycle, we describe dedicated combinations of approaches and how subsequent data integration enables insights towards a functional understanding of the underlying processes.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Herpesviridae/crescimento & desenvolvimento , Herpesviridae/ultraestrutura , Animais , Herpesviridae/fisiologia , Infecções por Herpesviridae/virologia , Humanos
14.
Ultramicroscopy ; 143: 41-51, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24262358

RESUMO

Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell.


Assuntos
Microscopia Crioeletrônica/métodos , Microscopia de Fluorescência/métodos , Linhagem Celular , Elétrons , Fluorescência , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Microscopia de Polarização/métodos
15.
Ultramicroscopy ; 146: 46-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24973653

RESUMO

Correlative fluorescence and soft X-ray cryo-microscopy/tomography on flat sample holders is perfectly suited to study the uncompromised physiological status of adherent cells at its best possible preservation by imaging after fast cryo-immobilization. To understand the mechanism by which herpesviruses induce nucleoplasmic reticulum, i.e. invaginations of the nuclear envelope, during their egress from the host cell nucleus, morphologically similar structures found in laminopathies and after chemical induction were investigated as a potentially more easily accessible model system. For example, anti-retroviral protease inhibitors like Saquinavir also induce invaginations of the nuclear membranes. With the help of newly designed multimodal nanoparticles as alignment and correlation markers, and by optimizing fluorescence cryo-microscopy data acquisition, an elaborate three-dimensional network of nucleoplasmic reticulum was demonstrated in nuclei of Saquinavir-treated rabbit kidney cells expressing a fluorescently labeled inner nuclear membrane protein. In part of the protease inhibitor-treated samples, nuclei exhibited dramatic ultrastructural changes indicative of programmed cell death/apoptosis. This unexpected observation highlights another unique feature of soft X-ray microscopy, i.e. high absorption contrast information not relying on labeled cellular components, at a 3D resolution of approximately 40 nm (half-pitch) and through a sample thickness of several micrometers. These properties make it a valuable part of the cell biology imaging toolbox to visualize the cellular ultrastructure in its completeness.


Assuntos
Apoptose/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Microscopia Crioeletrônica/métodos , Nanopartículas/administração & dosagem , Nanotecnologia/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Núcleo Celular/efeitos dos fármacos , Inibidores da Protease de HIV/toxicidade , Coelhos , Saquinavir/toxicidade
16.
J Exp Bot ; 56(418): 2047-58, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15996986

RESUMO

The small-scale distribution pattern of macroalgae in the river Ilm, in Germany was monitored. These patterns were then related to abiotic factors and tested to discover whether the distribution of the common macroalgae, Cladophora glomerata (L.) Kütz. and Vaucheria sp., was linked to differences in their photosynthetic plasticity. Cladophora glomerata revealed higher maximum photosynthetic electron transport rates after acclimation to high light (HL) compared with low light (LL) acclimated samples. By contrast, Vaucheria sp. did not acclimate to different growth light conditions. The photosynthetic performance of both algae also varied according to diurnal conditions. High light caused a reversible decrease of the dark-adapted quantum yield (F(v)/F(m)) in C. glomerata and a concomitant reversible decrease of the light-adapted quantum yield (DeltaF/F'(m)). In Vaucheria sp., F(v)/F(m) remained mostly unchanged over the day, whereas DeltaF/F'(m) decreased during the morning at low light. Photosynthetic pigments confirmed acclimational differences between the species. HL C. glomerata showed increased chlorophyll a:chlorophyll b ratios, and higher amounts of xanthophyll-cycle pigments compared with LL samples, whereas Vaucheria sp. did not reveal differences between the light treatments. While preferences for substrate size, water velocity, and depth are similar for C. glomerata and Vaucheria sp., the physiological responses to light conditions are different. It is concluded that light conditions significantly affect the small-scale spatial distribution of macroalgae and that fitness is enhanced in species with a higher plasticity in photosynthetic acclimation in unstable environments.


Assuntos
Eucariotos/fisiologia , Luz , Estações do Ano , Adaptação Fisiológica , Ritmo Circadiano , Demografia , Ecossistema , Água Doce , Fotossíntese , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA