Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 94(34): 11865-11872, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35977413

RESUMO

Simultaneous elemental detection of F and Cl offers quantitation of fluorinated and chlorinated compounds and their transformation products without compound-specific standards. Despite wide-ranging applications, this capability has been hindered by fundamental and technical shortcomings of current inductively coupled plasma (ICP)-MS methods in ion formation and isobaric interference elimination. These hurdles are alleviated here via a chemical ionization method. Fluorine and chlorine in analytes are first converted to HF and HCl by an ICP with post-plasma recombination and subsequently react with barium-containing ions supplied by a nanospray, yielding BaF+ and BaCl+ as elemental reporter ions. Notably, the method is readily interfaced to an Orbitrap MS which eliminates isobaric interferences at resolving powers as low as 35,000, far greater than that of current ICP-MS instruments. Moreover, the instrument is easily reverted to the ESI-MS mode for complementary molecular characterization. To demonstrate analytical capabilities, a workflow for rapid quantitation of compounds separated by reversed-phase liquid chromatography is developed using a species-independent calibration. The independent F and Cl measurements agree with each other, providing recoveries of >90% and LODs of 8-12 pmol Cl and 5-12 pmol F on the column. The workflow along with LC-ESI-MS on the same instrument is then applied to identify and quantify in-vitro drug metabolites, yielding total drug-related material recoveries of >80% and quantitation of minor metabolites summing to 8% of the total drug-related compounds. These results highlight the strengths of simultaneous F and Cl speciation for rapid quantitation with applications in early drug development.


Assuntos
Espectrometria de Massas , Calibragem , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Íons , Limite de Detecção , Espectrometria de Massas/métodos
2.
Anal Bioanal Chem ; 414(1): 333-349, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34432104

RESUMO

An interlaboratory comparison study was conducted by the Vitamin D Standardization Program (VDSP) to assess the performance of liquid chromatography - tandem mass spectrometry (LC-MS/MS) assays used for the determination of serum total 25-hydroxyvitamin D (25(OH)D), which is the sum of 25-hydroxyvitamin D2 (25(OH)D2) and 25-hydroxyvitamin D3 (25(OH)D3). A set of 50 single-donor samples was assigned target values for concentrations of 25(OH)D2, 25(OH)D3, 3-epi-25-hydroxyvitamin D3 (3-epi-25(OH)D3), and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) using isotope dilution liquid chromatography - tandem mass spectrometry (ID LC-MS/MS). VDSP Intercomparison Study 2 Part 1 includes results from 14 laboratories using 14 custom LC-MS/MS assays. Assay performance was evaluated using mean % bias compared to the assigned target values and using linear regression analysis of the test assay mean results and the target values. Only 53% of the LC-MS/MS assays met the VDSP criterion of mean % bias ≤ |±5%|. For the LC-MS/MS assays not meeting the ≤ |±5%| criterion, four assays had mean % bias of between 12 and 21%. Based on multivariable regression analysis using the concentrations of the four individual vitamin D metabolites in the 50 single-donor samples, the performance of several LC-MS/MS assays was found to be influenced by the presence of 3-epi-25(OH)D3. The results of this interlaboratory study represent the most comprehensive comparison of LC-MS/MS assay performance for serum total 25(OH)D and document the significant impact of the lack of separation of 3-epi-25(OH)D3 and 25(OH)D3 on assay performance, particularly with regard to mean % bias.


Assuntos
Espectrometria de Massas em Tandem , Vitamina D , 25-Hidroxivitamina D 2 , Cromatografia Líquida/métodos , Padrões de Referência , Espectrometria de Massas em Tandem/métodos , Vitamina D/análogos & derivados
3.
Anal Bioanal Chem ; 414(1): 351-366, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34435207

RESUMO

An interlaboratory comparison study was conducted by the Vitamin D Standardization Program (VDSP) to assess the performance of ligand binding assays (Part 2) for the determination of serum total 25-hydroxyvitamin D [25(OH)D]. Fifty single-donor samples were assigned target values for concentrations of 25-hydroxyvitamin D2 [25(OH)D2], 25-hydroxyvitamin D3 [25(OH)D3], 3-epi-25-hydroxyvitamin D3 [3-epi-25(OH)D3], and 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] using isotope dilution liquid chromatography-tandem mass spectrometry (ID LC-MS/MS). VDSP Intercomparison Study 2 Part 2 includes results from 17 laboratories using 32 ligand binding assays. Assay performance was evaluated using mean % bias compared to the assigned target values and using linear regression analysis of the test assay mean results and the target values. Only 50% of the ligand binding assays achieved the VDSP criterion of mean % bias ≤ |± 5%|. For the 13 unique ligand binding assays evaluated in this study, only 4 assays were consistently within ± 5% mean bias and 4 assays were consistently outside ± 5% mean bias regardless of the laboratory performing the assay. Based on multivariable regression analysis using the concentrations of individual vitamin D metabolites in the 50 single-donor samples, most assays underestimate 25(OH)D2 and several assays (Abbott, bioMérieux, DiaSorin, IDS-EIA, and IDS-iSYS) may have cross-reactivity from 24R,25(OH)2D3. The results of this interlaboratory study represent the most comprehensive comparison of 25(OH)D ligand binding assays published to date and is the only study to assess the impact of 24R,25(OH)2D3 content using results from a reference measurement procedure.


Assuntos
Espectrometria de Massas em Tandem , Vitamina D , 25-Hidroxivitamina D 2 , Cromatografia Líquida , Ligantes , Padrões de Referência , Vitamina D/análogos & derivados
4.
Anal Bioanal Chem ; 414(2): 1015-1028, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34750644

RESUMO

The Vitamin D External Quality Assessment Scheme (DEQAS) distributes human serum samples four times per year to over 1000 participants worldwide for the determination of total serum 25-hydroxyvitamin D [25(OH)D)]. These samples are stored at -40 °C prior to distribution and the participants are instructed to store the samples frozen at -20 °C or lower after receipt; however, the samples are shipped to participants at ambient conditions (i.e., no temperature control). To address the question of whether shipment at ambient conditions is sufficient for reliable performance of various 25(OH)D assays, the equivalence of DEQAS human serum samples shipped under frozen and ambient conditions was assessed. As part of a Vitamin D Standardization Program (VDSP) commutability study, two sets of the same nine DEQAS samples were shipped to participants at ambient temperature and frozen on dry ice. Twenty-eight laboratories participated in this study and provided 34 sets of results for the measurement of 25(OH)D using 20 ligand binding assays and 14 liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. Equivalence of the assay response for the frozen versus ambient DEQAS samples for each assay was evaluated using multi-level modeling, paired t-tests including a false discovery rate (FDR) approach, and ordinary least squares linear regression analysis of frozen versus ambient results. Using the paired t-test and confirmed by FDR testing, differences in the results for the ambient and frozen samples were found to be statistically significant at p < 0.05 for four assays (DiaSorin, DIAsource, Siemens, and SNIBE prototype). For all 14 LC-MS/MS assays, the differences in the results for the ambient- and frozen-shipped samples were not found to be significant at p < 0.05 indicating that these analytes were stable during shipment at ambient conditions. Even though assay results have been shown to vary considerably among different 25(OH)D assays in other studies, the results of this study also indicate that sample handling/transport conditions may influence 25(OH)D assay response for several assays.


Assuntos
Congelamento , Vitamina D/análogos & derivados , Vitamina D/sangue , Cromatografia Líquida/métodos , Humanos , Espectrometria de Massas em Tandem/métodos
5.
Anal Bioanal Chem ; 413(20): 5067-5084, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34184102

RESUMO

An interlaboratory study was conducted through the Vitamin D Standardization Program (VDSP) to assess commutability of Standard Reference Materials® (SRMs) and proficiency testing/external quality assessment (PT/EQA) samples for determination of serum total 25-hydroxyvitamin D [25(OH)D] using ligand binding assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). A set of 50 single-donor serum samples were assigned target values for 25-hydroxyvitamin D2 [25(OH)D2] and 25-hydroxyvitamin D3 [25(OH)D3] using reference measurement procedures (RMPs). SRM and PT/EQA samples evaluated included SRM 972a (four levels), SRM 2973, six College of American Pathologists (CAP) Accuracy-Based Vitamin D (ABVD) samples, and nine Vitamin D External Quality Assessment Scheme (DEQAS) samples. Results were received from 28 different laboratories using 20 ligand binding assays and 14 LC-MS/MS methods. Using the test assay results for total serum 25(OH)D (i.e., the sum of 25(OH)D2 and 25(OH)D3) determined for the single-donor samples and the RMP target values, the linear regression and 95% prediction intervals (PIs) were calculated. Using a subset of 42 samples that had concentrations of 25(OH)D2 below 30 nmol/L, one or more of the SRM and PT/EQA samples with high concentrations of 25(OH)D2 were deemed non-commutable using 5 of 11 unique ligand binding assays. SRM 972a (level 4), which has high exogenous concentration of 3-epi-25(OH)D3, was deemed non-commutable for 50% of the LC-MS/MS assays.


Assuntos
Sociedades Médicas/normas , Vitamina D/análogos & derivados , Vitamina D/química , Humanos , Padrões de Referência , Manejo de Espécimes , Vitamina D/sangue
6.
J Am Soc Mass Spectrom ; 35(5): 871-882, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38650348

RESUMO

Prevalence of F, Cl, S, P, Br, and I in pharmaceuticals and environmental contaminants has promoted standard-free quantitation using analyte-independent heteroatom responses in inductively coupled plasma (ICP)-MS. However, in-plasma ionization challenges and element-dependent isobaric interference removal methods have hampered the multielement nonmetal detection in ICP-MS. Here, we examine an alternative approach to enhance multielement detection capabilities. Analytes are introduced into an ICP leading to post-plasma formation of HF, HCl, H3PO3, H2SO4, HBr, and HI, which are then chemically ionized to BaF+, BaCl+, BaH2PO3+, BaHSO4+, BaBr+, and BaI+ via reactions with barium-containing ions supplied by a nanospray. Subsequent ion detection by high-resolution MS provides an element-independent approach for resolving isobaric interferences. We show that elemental response factors using these ions are linear within 2 orders of magnitude and independent of analytes' chemical structures. Using a single set of operating parameters, detection limits <1 ng/mL are obtained for Cl, Br, I, and P, while those for F and S are 1.8 and 6.2 ng/mL, respectively, offering improved multielement quantitation of nonmetals. Further, insights into ionization mechanisms indicate that the reactivities of reagent ions follow the order BaNO2+ > BaHCO2+ > Ba(H2O)n2+ ∼ BaCH3CO2+. Notably, the least reactive ions are generated directly by nanospray, suggesting that modification of these ions via interaction with plasma afterglow is critical for achieving good sensitivities. Moreover, our experiments indicate that the element-specific plasma products follow the order HF < H2SO4 ∼ HCl < H3PO3 ∼ HBr ∼ HI for their propensity to react with reagent ions. These insights provide guidelines to manage matrix effects and offer pathways to further improve the technique.

7.
J Steroid Biochem Mol Biol ; 231: 106318, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37169270

RESUMO

Ninety archived human serum samples from the Vitamin D External Quality Assessment Scheme (DEQAS) were analyzed using a reference measurement procedure (RMP) based on isotope dilution liquid chromatography - tandem mass spectrometry (ID LC-MS/MS) for the determination of 24,25-dihydroxyvitamin D3 [24,25(OH)2D3]. These 24,25(OH)2D3 results, in conjunction with concentration values assigned using RMPs for 25-hydroxyvitamin D2 [25(OH)D2] and 25-hydroxyvitamin D3 [25(OH)D3], provide a valuable resource for assessing the accuracy of measurements for 24,25(OH)2D3 and for investigating the relationship between 24,25(OH)2D3 and 25(OH)D3. Results for 24,25(OH)2D3 using the RMP were compared to DEQAS consensus values demonstrating that the consensus values were not sufficient to assess the accuracy of measurements among different laboratories and methods. A multivariable regression analysis approach using historical DEQAS consensus values for various total 25(OH)D assays was used to assess the contribution of 24,25(OH)2D3 concentration on the assay response. The response of several ligand binding assays for total 25(OH)D was shown to be impacted by the presence of 24,25(OH)2D3.


Assuntos
Espectrometria de Massas em Tandem , Vitamina D , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Vitaminas , Calcifediol , 24,25-Di-Hidroxivitamina D 3
8.
J Steroid Biochem Mol Biol ; 212: 105917, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34010687

RESUMO

An intralaboratory study assessing assay variability and bias for determination of serum total 25-hydroxyvitamin D [25(OH)D] was conducted by the Vitamin D Standardization Program (VDSP). Thirteen assays for serum total 25(OH)D were evaluated in a single laboratory including 11 unique immunoassays and one liquid chromatography - tandem mass spectrometry (LC-MS/MS) assay. Fifty single-donor serum samples, including eight samples with high concentrations of 25(OH)D2 (> 30 nmol/L), were assigned target values for 25(OH)D2 and 25(OH)D3 using reference measurement procedures (RMP). Using four replicate measurements for each sample, the mean total percent coefficient of variation (%CV) and mean % bias from the target values were determined for each assay using the 50 single-donor samples and a 42-sample subset, which excluded 8 high 25(OH)D2 concentration samples, and compared with VDSP performance criteria of ≤ 10 % CV and ≤ ±5 % mean bias. All 12 assays achieved the performance criterion for % CV, and 9 of the 12 assays were within ≤ ±5 % mean bias. The Fujirebio Inc. assay exhibited the lowest %CV and highest percentage of individual measurements within ≤ ±5 % mean bias. Ten immunoassays exhibited changes in response due to the high 25(OH)D2 samples with Abbott, Biomérieux, DiaSorin, DIAsource, and IDS-iSYS assays having the largest deviations. The Fujirebio Inc. and Beckman Coulter assays were only minimally affected by the presence of the high 25(OH)D2 samples. Samples with high concentrations of 25(OH)D2 provided a critical performance test for immunoassays indicating that some assays may not have equal response or recovery for 25(OH)D2 and 25(OH)D3.


Assuntos
Bioensaio/normas , Imunoensaio/normas , Vitamina D/análogos & derivados , Vitaminas/sangue , Viés , Cromatografia Líquida , Humanos , Laboratórios , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Vitamina D/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA