Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Oncol ; 2023: 1105042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138798

RESUMO

SH3BGRL, an adaptor protein, is upregulated in breast cancers and indicates its tumorigenic role. But the function of SH3BGRL in other types of cancers is largely unknown. Here, we modulate SH3BGRL expression level in two liver cancer cells and conduct both in vitro and in vivo analyses of SH3BGRL in cell proliferation and tumorigenesis. Results demonstrate that SH3BGRL notably inhibits cell proliferation and arrests the cell cycle in both LO2 and HepG2 cells. Molecularly, SH3BGRL upregulates the expression of ATG5 from proteasome degradation as well as the inhibitions of Src activation and its downstream ERK and AKT signaling pathways, which eventually enhance autophagic cell death. The xenograft mouse model reveals that SH3BGRL overexpression can efficiently suppress tumorigenesis in vivo, while the additional silencing ATG5 in SH3BGRL-overexpressing cells attenuates the inhibitory effect of SH3BGRL on both hepatic tumor cell proliferation and tumorigenicity in vivo. The relevance of SH3BGRL downregulation in liver cancers and their progression is validated based on the large-scale tumor data. Taken together, our results clarify the suppressive role of SH3BGRL in tumorigenesis of liver cancer, which would be of help to the diagnosis of liver cancer, while either promoting the autophagy of liver cancer cells or inhibiting the downstream signaling induced from SH3BGRL downregulation would be a promising therapy.

2.
Autophagy ; 18(8): 1822-1840, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34870550

RESUMO

Acquired chemotherapy resistance is one of the main culprits in the relapse of breast cancer. But the underlying mechanism of chemotherapy resistance remains elusive. Here, we demonstrate that a small adaptor protein, SH3BGRL, is not only elevated in the majority of breast cancer patients but also has relevance with the relapse and poor prognosis of breast cancer patients. Functionally, SH3BGRL upregulation enhances the chemoresistance of breast cancer cells to the first-line doxorubicin treatment through macroautophagic/autophagic protection. Mechanistically, SH3BGRL can unexpectedly bind to ribosomal subunits to enhance PIK3C3 translation efficiency and sustain ATG12 stability. Therefore, inhibition of autophagy or silence of PIK3C3 or ATG12 can effectively block the driving effect of SH3BGRL on doxorubicin resistance of breast cancer cells in vitro and in vivo. We also validate that SH3BGRL expression is positively correlated with that of PIK3C3 or ATG12, as well as the constitutive occurrence of autophagy in clinical breast cancer tissues. Taken together, our data reveal that SH3BGRL upregulation would be a key driver to the acquired chemotherapy resistance through autophagy enhancement in breast cancer while targeting SH3BGRL could be a potential therapeutic strategy against breast cancer.Abbreviations: ABCs: ATP-binding cassette transporters; Act D: actinomycin D; ACTB/ß-actin: actin beta; ATG: autophagy-related; Baf A1: bafilomycin A1; CASP3: caspase 3; CHX: cycloheximide; CQ: chloroquine; Dox: doxorubicin; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GEO: gene expression omnibus; GFP: green fluorescent protein; G6PD: glucose-6-phosphate dehydrogenase; GSEA: gene set enrichment analysis; IHC: immunochemistry; KEGG: Kyoto Encyclopedia of Genes and Genomes; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; 3-MA: 3-methyladenine; mRNA: messenger RNA; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; SH3BGRL: SH3 domain binding glutamate-rich protein-like; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.


Assuntos
Proteína 12 Relacionada à Autofagia , Autofagia , Neoplasias da Mama , Classe III de Fosfatidilinositol 3-Quinases , Autofagia/fisiologia , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Recidiva Local de Neoplasia , Proteínas
3.
J Exp Clin Cancer Res ; 39(1): 81, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381043

RESUMO

BACKGROUND: HER2-positive breast cancer is usually associated to the more aggressive progression and the worse prognosis, but the mechanism underlying the innate resistance to HER2-targeted therapy remains elusive. The scaffold protein SH3-domain-binding glutamic acid-rich protein-like protein (SH3BGRL) is indicated as a tumor suppressor in some cancers, but it is highly expressed in breast cancers. Here we characterized the tumorigenic function of SH3BGRL in HER2-expressing breast cancer cells and the subsequent effect in HER2-targeted therapies. METHODS: The interaction of SH3BGRL to HER2 were characterized with various truncated SH3BGRL mutants by immunoprecipitation and molecule docking simulation. The physiological roles of SH3BGRL interacting with HER2 in tumor progression and therapy implication were characterized by gain and loss of function approaches in vitro and in vivo. Immunohistochemistry was used for detections of SH3BGRL and p-HER2 (Y1196) expressions in xenografted tumors and human breast cancer tissues. Clinical relevance of SH3BGRL expression with HER2 was validated with both breast patient sample and the public data analyses. RESULTS: Our results demonstrated that SH3BGRL directly binds with HER2 on cell membrane via its motifs α1, α2 helixes and ß3 sheet, which postpones HER2 internalization upon EGF stimulation. Consequently, the association between SH3BGRL and HER2 contributed to the prolonged HER2 phosphorylation at specific tyrosine sites, especially at Y1196, and their downstream signaling activation. The relevance between SH3BGRL expression and p-HER2 (Y1196) phosphorylation was validated in both xenografted tumors and the breast cancer patient tissues. Mechanistically, SH3BGRL promoted breast tumor cell proliferation and survival, while reduced the cell sensitivity to anti-tumor drugs, especially to the HER2-targeted drugs. In contrast, Silencing SH3BGRL or inhibiting its downstream signals efficiently induced apoptosis of breast tumor cells with HER2 and SH3BGRL doubly positive expression. Database analysis also highlighted that SH3BGRL is a poor prognostic marker, especially for HER2-positive breast cancers. CONCLUSIONS: Our results disclose SH3BGRL as a novel posttranslational modulator of HER2 hyperactivation, which can lead to the intrinsic resistance to HER2-targeted therapy. SH3BGRL would be a pivotal therapy target and a diagnostic marker to HER2-positve patients. Thus, targeting SH3BGRL or the downstream signaling could relieve the innate resistance to some HER2-tageted therapies for both HER2 and SH3BGRL-postive breast cancers.


Assuntos
Neoplasias da Mama/genética , Membrana Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas/genética , Receptor ErbB-2/metabolismo , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Camundongos Nus , Transfecção
4.
Oxid Med Cell Longev ; 2019: 5152072, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863481

RESUMO

At present, apatinib is considered a new generation agent for the treatment of patients with gastric cancer. However, the effects of apatinib on pancreatic cancer have not been clarified. This study investigated the impact of apatinib on the biological function of pancreatic cancer cells and the potential mechanism involved in this process. Using the Cell Counting Kit-8 method, we confirmed that apatinib treatment inhibited cell proliferation in vitro. Moreover, the migration rate of pancreatic cells was inhibited. The effects of apatinib on apoptosis and cell cycle distribution of pancreatic carcinoma cells were detected by flow cytometry. The number of apoptotic cells was significantly increased, and the cell cycle was altered. Furthermore, we demonstrated that apatinib inhibited the expression of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor, and markers of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling pathway, which increased the levels of reactive oxygen species in vitro. Apatinib significantly inhibited the biological function of pancreatic cancer cells. It promoted apoptosis, downregulated the expression of HIF-1α, and increased the levels of reactive oxygen species.


Assuntos
Antineoplásicos/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Piridinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Apoptose , Regulação para Baixo , Humanos , Neoplasias Pancreáticas/patologia , Piridinas/farmacologia , Transdução de Sinais
5.
Oxid Med Cell Longev ; 2019: 6595189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30728888

RESUMO

In order to use stem cells as a resource for tissue regeneration, it is necessary to induce expansion in vitro. However, during culture, stem cells often lose functional properties and become senescent. Increasing evidence indicates that hypoxic preconditioning with physiological oxygen concentration can maintain the functional properties of stem cells in vitro. The purpose of the current study was to test the hypothesis that hypoxic preconditioning with physiological oxygen concentration can maintain the functional properties of stem cells in culture by reducing oxidative stress. In vitro studies were performed in primary human dental pulp cells (hDPCs). Reduced levels of oxidative stress and increased cellular "stemness" in response to physiological hypoxia were dependent upon the expression of reactive oxygen species (ROS). Subsequently, RNA-sequencing analysis revealed the increased expression of phosphoinositide 3-kinase (PI3K)/Akt signaling in culture, a pathway which regulates oxidative stress. Furthermore, we found evidence that PI3K/Akt signaling might affect intracellular ROS production by negatively regulating expression of the downstream protein Forkhead Box Protein O1 (FOXO1) and Caspase 3. Collectively, our data show that the PI3K/Akt pathway is activated in response to hypoxia and inhibits oxidative stress in a ROS-dependent manner. This study identified redox-mediated hypoxic preconditioning regulatory mechanisms that may be significant for tissue regeneration.


Assuntos
Polpa Dentária/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco/metabolismo , Adolescente , Adulto , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA