Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Environ Manage ; 326(Pt B): 116797, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423410

RESUMO

Recycling printed circuit boards (PCBs) in the e-waste stream is essential for ecological protection and metal recycling for a circular economy. Efficient metal recovery from PCBs is highly dependent on the determination of the optimum combination of inputs in the recycling process. In this study, optimization and predictive modelling of the bio-Fenton process were performed employing the response surface methodology (RSM) and the artificial intelligence (AI) models for efficient enzymatic metal bioleaching from discarded cellphone PCBs. The Box-Behnken design (BBD) of RSM was chosen as the design matrix. Further, two AI models, i.e., support vector machine (SVM) and artificial neural network (ANN) were employed to predict complex metal bioleaching process. Experiments were performed based on variations of four input process parameters, namely, glucose oxidase (GOx) content (100-1000 U/L), Fe2+ content (10-50 mM), PCB pulp density (1-10 g/L), and shaking speed (150-450 rpm). Results revealed that the maximum simultaneous enzymatic metal extraction of 100% Cu, 70% Ni, 40% Pb, and 100% Zn was attained at the optimized conditions: GOx content: 300 U/L, Fe2+ content: 10 mM, pulp density: 1 g/L, and shaking speed: 335 rpm. A comparative analysis of the AI models suggested that the ANN-based model predicting more accurate results than the SVM-based model with coefficient of determination values > 0.99 for all the targeted metals. The FTIR analysis confirmed the partial disintegration of PCB polymeric base by OH radicals (OH•), which helped in liberating and exposing the embedded metals to the bio-Fenton solution. Further, the oxidation of metals by ferric ions produced from GOx-mediated oxidation of ferrous ions ensued efficient enzymatic metal bioleaching. Selective metal recovery of >99% was obtained by the chemical precipitation of bioleachate.


Assuntos
Resíduo Eletrônico , Inteligência Artificial , Metais/química , Reciclagem/métodos , Ferro , Íons
2.
J Environ Manage ; 340: 118014, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121002

RESUMO

Microplastics (MPs) (plastic particles <5 mm) are globally acknowledged as a serious emerging micropollutant, which passes through various pathways in natural habitats and eventually ends up in our food chain. In this context, the present study critically reviews recent advances in MPs sampling and detection, occurrence, fate, and removal in wastewater treatment plants (WWTPs) by delineating their characteristics that manifest toxicity in the environment via effluent discharge. While there is currently no standard protocol in place, this work examined and compared the latest approaches adopted for improved sampling, sample processing, and characterization of MPs via fluorescence imaging and certified reference materials for method validation. MPs concentration from different sources in the WWTPs varies considerably ranging between 0.28 and 18285 MPs/L (raw wastewater), 0.004-750 MPs/L (effluent), and 0.00023-10380 MPs/kg (sludge). Assessment of MPs removal efficiency across different treatment stages in various in WWTPs has been performed and elucidated their removal mechanisms. The overall MPs removal efficiency in primary, secondary, and tertiary treatment stages in WWTPs reported to be around 57-99%, 78.1-99.4%, and 90-99.2%, respectively. Moreover, the review covers advanced treatment methods for removing MPs, including membrane bioreactors, coagulation/flocculation, ultrafiltration, rapid sand filtration, ozonation, disc filtration, and reverse osmosis, which have been found to be highly effective (>99%). Membrane bioreactors have been proclaimed to be the most reliable secondary treatment technique for MPs removal. Coagulation (92.2-95.7%) followed by ozonation (99.2%) as a tertiary treatment chain has been demonstrated to be the most efficient in removing MPs from secondary-treated wastewater effluent. Further, the review delineates the effect of different treatment stages on the physical and chemical characteristics of MPs, associated toxicity, and potential impact factors that can influence the MPs removal efficiency in WWTPs. Conclusively, the merits and demerits of advanced treatment techniques to mitigate MPs pollution from the wastewater system, research gaps, and future perspectives have been highlighted.


Assuntos
Ozônio , Poluentes Químicos da Água , Águas Residuárias , Microplásticos , Plásticos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química , Monitoramento Ambiental
3.
Environ Monit Assess ; 195(6): 758, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37248306

RESUMO

Antimony (Sb) has been classified as a high-priority contaminant in the environment. Sb contamination resulting from the use of antimony-containing compounds in industry necessitates the development of efficient methods to remove it from water and wastewater. Adsorption is a highly efficient and reliable method for pollutants removal owing to its availability, recyclability, and low cost. Recently, carbonaceous materials and their applications for the removal of Sb from the aqueous matrices have received special attention worldwide. Herein, this review systematically summarizes the occurrence and exposure of Sb in the environment and on human health, respectively. Different carbon-based adsorbents have been classified for the adsorptive removal of Sb and their adsorption characteristics have been delineated. Recent development in the adsorption performance of the adsorbent materials for improving the Sb removal from the aqueous medium has been outlined. Further, to develop an understanding of the effect of different parameters like pH, competitive ions, and dissolved ions for Sb adsorption and subsequent removal have been discussed. A retrospective analysis of literature was conducted to present the adsorption behavior and underlying mechanisms involved in the removal of Sb using various adsorbents. Moreover, this study has identified emerging research gaps and emphasized the need for developing modified/engineered carbonaceous adsorbents to enhance Sb adsorption from various aqueous matrices.


Assuntos
Poluentes Químicos da Água , Água , Humanos , Água/química , Águas Residuárias , Antimônio , Carbono , Estudos Retrospectivos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Adsorção
4.
Environ Res ; 214(Pt 4): 114004, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970375

RESUMO

Per- and polyfluoroalkyl substances (PFAS), a class of synthetic organic pollutants, have prompted concerns about their global prevalence and possible health effects. This review consolidates the most recent data on different aspects of PFAS, such as their occurrence, and prominent sources. The current literature analysis of PFAS occurrence suggests significant variation in their concentration ranging from 0.025 to 1.2 × 108 ng/L in wastewater, 0.01 to 8.9 × 105 ng/L in surface water, and <0.01 to 1.3 × 104 ng/L in groundwater globally. Since conventional treatment techniques are inadequate in remediating PFAS, innovative treatment approaches based on their removal or mineralization mechanism have been comprehensively reviewed. Advanced treatment technologies have shown degradation or removal of PFAS to be around 6 and > 99.9% in different aqueous matrices. However, due to significant drawbacks in their applicability in wastewater treatment plants (WWTPs), a novel treatment train approach has emerged as an effective alternative. This approach synergistically integrates multiple remediation techniques while addressing the impediments of individual treatments. Furthermore, nanofiltration (NF270) combined with electrochemical degradation has been demonstrated to be the most efficient (>98%) treatment train approach in PFAS remediation. If implemented in WWTPs, nanofiltration followed by adsorption using activated carbon is also a viable method for PFAS removal.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Fluorocarbonos/análise , Água Subterrânea/química , Água/análise , Poluentes Químicos da Água/análise
5.
J Environ Manage ; 323: 116133, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099867

RESUMO

Rapid surge in electronic waste (e-waste) and its unscientific handling has an adverse impact on humans and the environment. Waste printed circuit board (WPCB), an integrated component of e-waste, has a high metallic content that includes both toxic and precious metals. Therefore, metal recovery is essential not just to avoid environmental degradation but also for economic growth. The current literature analysis focuses on one such eco-friendly approach, known as fungal biotechnology, for extracting metals from WPCBs. Among diverse bioleaching agents, fungi have shown promising metal extraction efficiency (Al: 65-96%; Co: 45-90%; Cu: 34-100%; Ni: 8-95%; Mn: 70-95%; Pb: 27-95%; Zn: 54-99%) and the ability to work in a wide pH range. However, in terms of metal recovery from WPCBs, fungal bioleaching has been less explored. This review, thus, assesses the fungal biotechnology for metal extraction from WPCBs and discusses the associated mechanism and kinetics involved. Different process parameters affecting the fungal bioleaching have also been discussed briefly. The review highlights that, while this process has enough potential, some associated drawbacks hinder its practical applicability on an industrial scale. Lastly, some suggestions for scaling up and reducing the cost of the process have been made, which need to be addressed.


Assuntos
Resíduo Eletrônico , Reciclagem , Biotecnologia , Resíduo Eletrônico/análise , Humanos , Cinética , Chumbo/análise
6.
J Environ Qual ; 47(1): 16-29, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29415111

RESUMO

Management of both municipal and industrial organic wastes remains a major threat to biota and the environment due to the presence of pathogens in abundance. Vermicomposting employing earthworms is increasingly gaining attention as a sustainable and ecofriendly technique to transform and sanitize a variety of organic wastes into nutrient-rich biofertilizer. Although considerable research has been undertaken to show that vermicomposting can significantly reduce pathogenic contents, there is little effort to summarize the various mechanisms responsible for it. With the aim to assess the fate of pathogens during vermicomposting of various organic wastes, this article provides a comprehensive summary on the occurrence of pathogens in a variety of wastes vis-à-vis pathogens standards, the efficacy of the process for pathogen reduction, and current knowledge of the plausible mechanisms involved. It is evident from the present study that earthworms and endosymbiotic microbes during vermicomposting tend to eliminate pathogens by enhancing enzymatic activities in both gut- and cast-associated processes. Pathogen reduction during vermicomposting can be plausibly attributed to direct actions like microbial inhibition due to intestinal enzymatic action, and secretion of coelomic fluids with antibacterial properties, as well as indirect actions like stimulation of endemic microbes leading to competition and antagonism, and aeration by burrowing activity. Further, the pathogen reduction during vermicomposting is largely selective, and earthworms exert a differential effect according to the earthworm species and whether the pathogen considered is Gram-positive or -negative, owing to its cell wall composition. However, further research is necessary to understand the exact mechanisms involved for pathogen reduction during vermistabilization of municipal and industrial organic wastes.


Assuntos
Bactérias/patogenicidade , Biodegradação Ambiental , Resíduos Industriais , Oligoquetos , Animais , Solo
7.
Chemosphere ; 360: 142397, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782130

RESUMO

Removal of perfluorooctanoic acid (PFOA) from water matrices is crucial owing to its pervasiveness and adverse ecological and human health effects. This study investigates the adsorptive removal of PFOA using magnetic biochar (MBC) derived from FeCl3-treated peanut husk at different temperatures (300, 600, and 900 °C). Preliminary experiments demonstrated that MBC600 exhibited superior performance, with its characterization confirming the presence of γ-Fe2O3. However, efficient PFOA removal from water matrices depends on determining the optimum combination of inputs in the treatment approaches. Therefore, optimization and predictive modeling of the PFOA adsorption were investigated using the response surface methodology (RSM) and the artificial intelligence (AI) models, respectively. The central composite design (CCD) of RSM was employed as the design matrix. Further, three AI models, viz. artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) were selected to predict PFOA adsorption. The RSM-CCD model applied to optimize three input process parameters, namely, adsorbent dose (100-400 mg/L), pH (3-10), and contact time (20-60 min), showed a statistically significant (p < 0.05) effect on PFOA removal. Maximum PFOA removal of about 98.3% was attained at the optimized conditions: adsorbent dose: 400 mg/L, pH: 3.4, and contact time: 60 min. Non-linear analysis showed PFOA adsorption was best fitted by pseudo-second-order kinetics (R2 = 0.9997). PFOA adsorption followed Freundlich isotherm (R2 = 0.9951) with a maximum adsorption capacity of ∼307 mg/g. Thermodynamics and spectroscopic analyses revealed that PFOA adsorption is a spontaneous, exothermic, and physical phenomenon, with electrostatic interaction, hydrophobic interaction, and hydrogen bonding governing the process. A comparative analysis of the statistical and AI models for PFOA adsorption demonstrated high R2 (>0.99) for RSM-CCD, ANN, and ANFIS. This research demonstrates the applicability of the statistical and AI models for efficient prediction of PFOA adsorption from water matrices using MBC (MBC600).


Assuntos
Arachis , Inteligência Artificial , Caprilatos , Carvão Vegetal , Fluorocarbonos , Termodinâmica , Poluentes Químicos da Água , Purificação da Água , Caprilatos/química , Fluorocarbonos/química , Carvão Vegetal/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Cinética , Purificação da Água/métodos , Arachis/química , Redes Neurais de Computação
8.
J Hazard Mater ; 468: 133818, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377913

RESUMO

Effluent from sewage treatment plants (STPs) is a significant source of microplastics (MPs) re-entry into the environment. Coagulation-flocculation-sedimentation (CFS) process as an initial tertiary treatment step requires investigation for coagulative MPs removal from secondary-treated sewage effluents. In this study, experiments were conducted on synthetic water containing 25 mg/L polystyrene (PS) MPs using varying dosages of FeCl3 (1-10 mg/L) and chitosan (0.25-9 mg/L) to assess the effect of process parameters, such as pH (4-8), stirring speed (0-200 rpm), and settling time (10-40 min). Results revealed that ∼89.3% and 21.4% of PS removal were achieved by FeCl3 and chitosan, respectively. Further, their combination resulted in a maximum of 99.8% removal at favorable conditions: FeCl3: 2 mg/L, chitosan: 7 mg/L, pH: 6.3, stirring speed: 100 rpm, and settling time: 30 min, with a statistically significant (p < 0.05) effect. Artificial neural network (ANN) validated the experimental results with RMSE = 1.0643 and R2 = 0.9997. Charge neutralization, confirmed by zeta potential, and adsorption, ascertained by field-emission scanning electron microscope (FESEM) and Fourier-transform infrared spectroscopy (FTIR), were primary mechanisms for efficient PS removal. For practical considerations, the application of the FeCl3-chitosan system on the effluents from moving bed biofilm reactor (MBBR) and sequencing batch reactor (SBR)-based STPs, spiked with PS microbeads, showed > 98% removal at favorable conditions.


Assuntos
Quitosana , Cloretos , Compostos Férricos , Poluentes Químicos da Água , Microplásticos , Plásticos , Esgotos , Poliestirenos , Biofilmes , Reatores Biológicos , Água , Redes Neurais de Computação
9.
J Hazard Mater ; 458: 131883, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348371

RESUMO

Evidence of atmospheric microplastics (MPs) deposition in India is scarce though reports of MPs pollution in other environmental media exist. Henceforth, this study for the first time examines and compares the abundance, characteristics, transport, and source analysis of atmospheric MPs in the urban and peri-urban areas of Patna city, Bihar, India. Wet atmospheric fallout samples were collected and analyzed for MPs deposition rate. The results showed that the mean MPs concentrations at each site were 1959.6 ± 205 (urban) and 1320.4 ± 126 (peri-urban) MPs/m2/day. The deposited MPs were mainly transparent fibers and fragments with a mean size of 347.9 ± 189.2 µm. Polyethylene terephthalate and polypropylene were the most abundant polymer found at both sites. Morphological characteristics revealed surface degradation and deposition of metal contaminants on the identified MPs. Meteorological parameters (wind direction and rainfall intensity) were significantly associated with the distribution of atmospheric MPs in the study area. The cluster mean backward trajectory suggested vehicular emissions, construction activities, and waste mismanagement as the potential sources of MPs. Findings of the present work necessitates future studies in gaining a deeper understanding of the fate, movement, and potential health hazards associated with atmospheric MPs.

10.
Sci Total Environ ; 905: 167099, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730063

RESUMO

Sewage treatment plants (STPs) are considered as a prominent source for releasing microplastics (MPs) into the riverine systems. Though MPs abundance and removal efficacy in different secondary treatment technique-based STPs have been extensively studied worldwide, such studies are scarce in Indian conditions. Herein, this study comprehensively assesses MPs abundance, characterization, and their removal in the selected secondary treatment technique-based STPs discharging into the middle stretch of the Ganga River in India. MPs concentration (n/L) in influent and effluent of the STPs varied between 42 ± 10 to 150 ± 19 and 3 ± 1 to 22 ± 5, respectively. Overall, the primary treatment stage was observed to remove MPs by 23-42 %, while the secondary treatment stage removed MPs by 67-90 %. Selected technique-based STPs exhibited varying MPs removal efficacies as follows: SBR (94 %), TF (90 %), AL (88 %), UASB (87 %), ASP (85 %), FAB (84 %), and Bio-tower (77 %). MPs ranging from 50 to 250 µm were the dominant sizes, with PP, PE, and PS being the prevalent polymers. The Ganga River receives about 3 × 108 MPs/day from STP effluents, and an estimated 4.5 × 107 MPs/day are released via the sludge. This comprehensive assessment of MPs abundance and removal from different technology-based Indian STPs will allow the comparison of the generated dataset with similar studies worldwide.


Assuntos
Microplásticos , Poluentes Químicos da Água , Esgotos/análise , Plásticos , Rios , Monitoramento Ambiental , Índia , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos
11.
Sci Total Environ ; 899: 165723, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37482362

RESUMO

Coagulation-flocculation-sedimentation (CFS) system has been identified as one of the favored treatment technique in water/wastewater treatment systems and hence, it is crucial to comprehend the efficacy of different coagulants used in removing microplastics (MPs) from aqueous matrices. Henceforth, this study critically reviews the recent progress and efficacy of different coagulants used to date for MPs removal. This includes laboratory and field-scale studies on inorganic and organic coagulants, as well as laboratory-scale studies on natural coagulants. Inorganic and organic coagulants have varying MPs removal efficiencies such as: Fe/Al-salts (30 %-95 %), alum (99 %), and poly aluminum chloride (13 %-97 %), magnesium hydroxide (84 %), polyamine (99 %), organosilanes (>95 %), and polyacrylamide (85 %-98 %). Moreover, studies have highlighted the use of natural coagulants, such as chitosan, protein amyloid fibrils, and starch has shown promising results in MPs removal with sevral advantages over traditional coagulants. These natural coagulants have demonstrated high MPs removal efficiencies with chitosan-tannic acid (95 %), protein amyloid fibrils (98 %), and starch (>90 %). Moreover, the MPs removal efficiencies of natural coagulants are compared and their predominant removal mechanisms are determined. Plant-based natural coagulants can potentially remove MPs through mechanisms such as polymer bridging and charge neutralization. Further, a systematic analysis on the effect of operational parameters highlights that the pH affects particle surface charge and coagulation efficiency, while mixing speed affects particle aggregation and sedimentation. Also, the optimal mixing speed for effective MPs removal depends on coagulant type and concentration, water composition, and MPs characteristics. Moreover, this work highlights the advantages and limitations of using different coagulants for MPs removal and discusses the challenges and future prospects in scaling up these laboratory studies for real-time applications.


Assuntos
Quitosana , Purificação da Água , Microplásticos , Eliminação de Resíduos Líquidos/métodos , Plásticos , Amiloide , Floculação , Purificação da Água/métodos , Água
12.
Ecotoxicol Environ Saf ; 79: 214-224, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22277776

RESUMO

Transformation and availability of nutrients and some heavy metals were assessed during the integrated composting-vermicomposting of both primary sewage sludge (PSS) and waste activated sewage sludge (WAS) using matured vermicompost as indigenous bulking material and employing Eisenia fetida as earthworm species. Vermicomposting resulted in significant increase in total N (TN) (PSS: 41.7-64.6%, F=11.6, P<0.05; WAS: 36.4-58.6%, F=6.4, P<0.05), water soluble N (WSN) (PSS: 37.1-50.5%, F=30.1, P<0.05; WAS: 40.1-53.0%, F=27.6, P<0.05), total P (TP) (PSS: 39.9-69.8%, F=27.1, P<0.05; WAS: 32.2-56.6%, F=21.4, P<0.05) and water soluble P (WSP) (PSS: 25.2-34.3%, F=163.9, P<0.05; WAS: 24.1-34.2%, F=144.3, P<0.05) as compared to the initial compost material depending on different experimental conditions. The study demonstrated that the vermicomposting significantly improved the availability of nutrients in sewage sludges. In addition, vermicomposting considerably reduced the availability of heavy metals except Fe and Mn, presumably by forming organic-bound complexes in spite of several fold increase in their total content. The environmental conditions (i.e., temperature and relative humidity), in general, showed significant effect on the transformation and availability of nutrients and heavy metals. There was no effect of earthworm density on the transformation and availability of heavy metals and nutrients except N and P, possibly due to prior exposure during acclimation period in sewage sludge.


Assuntos
Metais Pesados/análise , Oligoquetos/metabolismo , Esgotos , Poluentes do Solo/metabolismo , Eliminação de Resíduos Líquidos , Animais , Biodegradação Ambiental , Monitoramento Ambiental , Metais Pesados/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Solo , Poluentes do Solo/análise , Temperatura
13.
Sci Total Environ ; 759: 144274, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33333331

RESUMO

The COVID-19 pandemic has reemphasized the indispensable role of plastics in our daily life. Plastics in terms of personal protective equipment (PPEs) and other single-use medical equipment along with packaging solutions owing to their inherent properties have emerged as a life-savior for protecting the health and safety of the frontline health workers and the common citizens during the pandemic. However, plastics have been deemed as evil polluter due to their indiscriminate littering and mismanagement amid increased plastic usage and waste generation during this unprecedented crisis. This article reviews and assesses to dwell upon whether plastics in the time of pandemic are acting as protector of the public health or polluter of the environment. Considering the utilities and limitations of plastic along with its management or mismanagement, and the fate, an equitable appraisal suggests that the consumers' irresponsible behavior, and attitude and poor awareness, and the stress on waste management infrastructure in terms of collection, operation, and financial constraints as the major drivers, leading to mismanagement, turn plastic into an evil polluter of the environment. Plastic can be a protector if managed properly and complemented by the circular economy strategies in terms of reduction, recycle and recovery, and thereby preventing leakage into the environment. To safeguard the supply chain of PPEs, several decontamination techniques have been adopted worldwide ensuring their effective reprocessing to prioritize the circular economy within the system. Policy guidelines encouraging to adopt safer practices and sustainable technical solutions along with consumers' education for awareness creation are the need of the hour for preventing plastic to turn from protector with high utility to polluter.


Assuntos
COVID-19 , Pandemias , Humanos , Equipamento de Proteção Individual , Plásticos , Reciclagem , SARS-CoV-2
14.
J Environ Chem Eng ; 9(1): 104870, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33282675

RESUMO

The coronavirus disease 2019 (COVID-19), a pandemic of global concern, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recently, many studies have documented the detection of SARS-CoV-2 in human excreta and wastewater. The presence of SARS-CoV-2 in human excreta and wastewater poses serious implications for wastewater treatment. Thus, this review aims to understand the fate of SARS-CoV-2 in the urban water cycle and its inactivation in different stages of treatment in wastewater treatment plants (WWTPs) for effective control to prevent any recurrence of the outbreak. The viral load of SARS-CoV-2 in feces of individuals tested positive has been reported to be in the range of 104-108 copies/L depending on the infection stages. In the wastewater, dilution of feces results in the decrease of the viral load in the range of 102-106.5 copies/L. Monitoring of SARS-CoV-2 in WWTP samples following the wastewater-based epidemiology (WBE) can complement real epidemiological data from clinical testing to help to monitor disease outbreaks in a community. Though promising, high uncertainty involved with the WBE technique warrants further research for reliable and quantitative information. Inactivation of SARS-CoV-2 in WWTPs depends on the operational parameters and is generally enhanced by the tertiary treatment and disinfection techniques with a higher dosage. However, the risk of SARS-CoV-2 dissemination by the treated effluent intended to be disposed of or reused in the urban water cycle needs to be assessed with respect to the extent of viral infectivity.

15.
Waste Manag ; 75: 103-123, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29454818

RESUMO

Comprehensive characterization of printed circuit board (PCB) of end-of-life electrical and electronic equipment (EEE) is obligatory for prospective profitable beneficiation. In this study, beneficiation oriented comprehensive characterization of two brands of PCBs each of 16 end-of-life EEE was conducted in terms of their physicochemical characteristics with special emphasis on the content of 16 general elements, 2 precious metals and 15 rare earth elements (REEs). General elements and their highest weight percent composition found in different PCBs of the EEEs were Cu (23% in laptop), Al (6% in computer), Pb (15% in DVD player) and Ba (7% in TV). The high abundant of precious metals such as Au (316 g/ton) and Ag (636 g/ton) in mobile phone and laptop, respectively coupled with rapid obsolescence age makes waste PCBs of information technology and telecommunication equipment the most potent resource reservoir. Additionally, most of the waste PCBs were observed to contain REEs in considerable quantity with Sc up to 31 g/ton and Ce up to 13 g/ton being the major constituents. Comprehensive characterization of waste PCBs therefore will systematically help towards better understanding of e-waste recycling processes for beneficiation purpose and sustainable resource circulation and conservation.


Assuntos
Resíduo Eletrônico , Reciclagem , Humanos , Metais , Estudos Prospectivos
16.
Environ Sci Pollut Res Int ; 24(35): 27445-27456, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28980132

RESUMO

Metals liberation and composition are decisive attributes in characterization of e-waste for metal recycling. Though end-of-life printed circuit board (PCB) is an integral part of e-waste as secondary resource reservoir, yet no standardized procedure exists for metals liberation and dissolution for its characterization. Thus, the paper aims at assessment of metals liberation upon comminution employing scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) followed by comparative assessment of the existing United States Environmental Protection Agency (USEPA) digestion procedures, viz., USEPA 3050B, USEPA 3051A, and USEPA 3052, in effective dissolution of metals from comminuted particles of waste PCBs of computer, laptop, mobile phone, and television. Effect of comminution and digestion conditions was assessed to have significant role in metal liberation and dissolution from PCBs. The SEM-EDS analysis demonstrated partial release of metals from the silica matrix of PCBs. The USEPA digestion methods showed statistically significant (P < 0.05) difference with greater dissolution of metals complexed to PCB matrix by the USEPA 3052 method owing to use of strong acid like hydrofluoric acid. Base metals like Cu and Zn and toxic metals such as Pb and Cd were present in abundance in PCBs and in general exceeded the total threshold limit concentration (TTLC). The maximum contents of Cu (20.13 ± 0.04 wt.%) and Zn (1.89 ± 0.05 wt.%) in laptop PCBs, Pb (2.26 ± 0.08 wt.%) in TV PCBs, and Cd (0.0812 ± 0.0008 wt.%) in computer PCBs were observed.


Assuntos
Resíduo Eletrônico/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Reciclagem/métodos , Dióxido de Silício/química , Espectrometria por Raios X , Estados Unidos , United States Environmental Protection Agency
17.
Environ Sci Pollut Res Int ; 24(8): 6989-7008, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28091997

RESUMO

Waste electrical and electronic equipment (WEEE) or electronic waste (e-waste) is one of the fastest growing waste streams in the urban environment worldwide. The core component of printed circuit board (PCB) in e-waste contains a complex array of metals in rich quantity, some of which are toxic to the environment and all of which are valuable resources. Therefore, the recycling of e-waste is an important aspect not only from the point of waste treatment but also from the recovery of metals for economic growth. Conventional approaches for recovery of metals from e-waste, viz. pyrometallurgical and hydrometallurgical techniques, are rapid and efficient, but cause secondary pollution and economically unviable. Limitations of the conventional techniques have led to a shift towards biometallurgical technique involving microbiological leaching of metals from e-waste in eco-friendly manner. However, optimization of certain biotic and abiotic factors such as microbial species, pH, temperature, nutrients, and aeration rate affect the bioleaching process and can lead to profitable recovery of metals from e-waste. The present review provides a comprehensive assessment on the metallurgical techniques for recovery of metals from e-waste with special emphasis on bioleaching process and the associated factors.


Assuntos
Resíduo Eletrônico/análise , Metais/isolamento & purificação , Metais/metabolismo , Reciclagem/métodos , Ar , Meio Ambiente , Concentração de Íons de Hidrogênio , Metalurgia , Metais/química , Medição de Risco , Temperatura
18.
Waste Manag ; 70: 13-21, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28951147

RESUMO

There has been a significant rise in municipal solid waste (MSW) generation in the last few decades due to rapid urbanization and industrialization. Due to the lack of source segregation practice, a need for automated segregation of recyclables from MSW exists in the developing countries. This paper reports a thermal imaging based system for classifying useful recyclables from simulated MSW sample. Experimental results have demonstrated the possibility to use thermal imaging technique for classification and a robotic system for sorting of recyclables in a single process step. The reported classification system yields an accuracy in the range of 85-96% and is comparable with the existing single-material recyclable classification techniques. We believe that the reported thermal imaging based system can emerge as a viable and inexpensive large-scale classification-cum-sorting technology in recycling plants for processing MSW in developing countries.


Assuntos
Reciclagem , Resíduos Sólidos/classificação , Gerenciamento de Resíduos/métodos , Países em Desenvolvimento , Resíduos Sólidos/análise
19.
Waste Manag ; 60: 56-74, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27663707

RESUMO

A crucial prerequisite for recycling forming an integral part of municipal solid waste (MSW) management is sorting of useful materials from source-separated MSW. Researchers have been exploring automated sorting techniques to improve the overall efficiency of recycling process. This paper reviews recent advances in physical processes, sensors, and actuators used as well as control and autonomy related issues in the area of automated sorting and recycling of source-separated MSW. We believe that this paper will provide a comprehensive overview of the state of the art and will help future system designers in the area. In this paper, we also present research challenges in the field of automated waste sorting and recycling.


Assuntos
Reciclagem/métodos , Resíduos Sólidos/análise , Gerenciamento de Resíduos/métodos , Eliminação de Resíduos
20.
Environ Sci Pollut Res Int ; 22(11): 8075-93, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25787220

RESUMO

The paper presents a compilation of various autotrophic and heterotrophic ways of solid-phase denitrification. It covers a complete understanding of various pathways followed during denitrification process. The paper gives a brief review on various governing factors on which the process depends. It focuses mainly on the solid-phase denitrification process, its applicability, efficiency, and disadvantages associated. It presents a critical review on various methodologies associated with denitrification process reported in past years. A comparative study has also been carried out to have a better understanding of advantages and disadvantages of a particular method. We summarize the various organic and inorganic substances and various techniques that have been used for enhancing denitrification process and suggest possible gaps in the research areas whi'ch are worthy of future research.


Assuntos
Processos Autotróficos , Bactérias/metabolismo , Desnitrificação , Ecossistema , Processos Heterotróficos , Nitratos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adaptação Fisiológica/fisiologia , Concentração de Íons de Hidrogênio , Nitratos/metabolismo , Ciclo do Nitrogênio/fisiologia , Oxigênio/análise , Temperatura , Fatores de Tempo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA