Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-27993855

RESUMO

As new pathogenic viruses continue to emerge, it is paramount to have intervention strategies that target a common denominator in these pathogens. The fusion of viral and cellular membranes during viral entry is one such process that is used by many pathogenic viruses, including chikungunya virus, West Nile virus, and influenza virus. Obatoclax, a small-molecule antagonist of the Bcl-2 family of proteins, was previously determined to have activity against influenza A virus and also Sindbis virus. Here, we report it to be active against alphaviruses, like chikungunya virus (50% effective concentration [EC50] = 0.03 µM) and Semliki Forest virus (SFV; EC50 = 0.11 µM). Obatoclax inhibited viral entry processes in an SFV temperature-sensitive mutant entry assay. A neutral red retention assay revealed that obatoclax induces the rapid neutralization of the acidic environment of endolysosomal vesicles and thereby most likely inhibits viral fusion. Characterization of escape mutants revealed that the L369I mutation in the SFV E1 fusion protein was sufficient to confer partial resistance against obatoclax. Other inhibitors that target the Bcl-2 family of antiapoptotic proteins inhibited neither viral entry nor endolysosomal acidification, suggesting that the antiviral mechanism of obatoclax does not depend on its anticancer targets. Obatoclax inhibited the growth of flaviviruses, like Zika virus, West Nile virus, and yellow fever virus, which require low pH for fusion, but not that of pH-independent picornaviruses, like coxsackievirus A9, echovirus 6, and echovirus 7. In conclusion, obatoclax is a novel inhibitor of endosomal acidification that prevents viral fusion and that could be pursued as a potential broad-spectrum antiviral candidate.


Assuntos
Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Fusão de Membrana/efeitos dos fármacos , Pirróis/farmacologia , Vírus da Floresta de Semliki/efeitos dos fármacos , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/virologia , Vírus Chikungunya/genética , Vírus Chikungunya/crescimento & desenvolvimento , Cricetinae , Farmacorresistência Viral/genética , Endossomos/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Indóis , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutação , Vermelho Neutro/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/crescimento & desenvolvimento , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Vírus do Nilo Ocidental/efeitos dos fármacos , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/crescimento & desenvolvimento , Vírus da Febre Amarela/efeitos dos fármacos , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/crescimento & desenvolvimento , Zika virus/efeitos dos fármacos , Zika virus/genética , Zika virus/crescimento & desenvolvimento
2.
Virol J ; 13(1): 171, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27756316

RESUMO

BACKGROUND: Coxsackievirus A9 (CV-A9) is a pathogenic enterovirus type within the family Picornaviridae. CV-A9 infects A549 human epithelial lung carcinoma cells by attaching to the αVß6 integrin receptor through a highly conserved Arg-Gly-Asp (RGD) motif, which is located at the exposed carboxy-terminus of the capsid protein VP1 detected in all studied clinical isolates. However, genetically-modified CV-A9 that lacks the RGD motif (CV-A9-RGDdel) has been shown to be infectious in some cell lines but not in A549, suggesting that RGD-mediated integrin binding is not always essential for efficient entry of CV-A9. METHODS: Two cell lines, A549 and SW480, were used in the study. SW480 was the study object for the integrin-independent entry and A549 was used as the control for integrin-dependent entry. Receptor levels were quantitated by cell sorting and quantitative PCR. Antibody blocking assay and siRNA silencing of receptor-encoding genes were used to block virus infection. Peptide phage display library was used to identify peptide binders to CV-A9. Immunofluorescence and confocal microscopy were used to visualize the virus infection in the cells. RESULTS: We investigated the receptor use and early stages of CV-A9 internalization to SW480 human epithelial colon adenocarcinoma cells. Contrary to A549 infection, we showed that both CV-A9 and CV-A9-RGDdel internalized into SW480 cells and that function-blocking anti-αV integrin antibodies had no effect on the binding and entry of CV-A9. Whereas siRNA silencing of ß6 integrin subunit had no influence on virus infection in SW480, silencing of ß2-microglobulin (ß2M) inhibited the virus infection in both cell lines. By using a peptide phage display screening, the virus-binding peptide identical to the N-terminal sequence of HSPA5 protein was identified and shown to block the virus infection in both A549 and SW480 cell lines. HSPA5 was also found to co-localize with CV-A9 at the SW480 cell periphery during the early stages of infection by confocal microscopy. CONCLUSIONS: The data suggest that while αVß6 integrin is essential for CV-A9 in A549 cell line, it is not required in SW480 cell line in which ß2M and HSPA5 alone are sufficient for CV-A9 infection. This suggests that the choice of CV-A9 receptor(s) is dependent on the tissue/cellular environment.


Assuntos
Antígenos de Neoplasias/metabolismo , Enterovirus Humano B/fisiologia , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Integrinas/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Humanos
3.
Genome Announc ; 6(17)2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700151

RESUMO

We report here the nearly complete Illumina-sequenced consensus genome sequences of six isolates of echovirus 7 (E7), including oncolytic virotherapy virus RIGVIR and the Wallace prototype. Amino acid identities within the coding region were highly conserved across all isolates, ranging from 95.31% to 99.73%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA