RESUMO
Hundreds of effector proteins of the human malaria parasite Plasmodium falciparum constitute a "secretome" carrying a host-targeting (HT) signal, which predicts their export from the intracellular pathogen into the surrounding erythrocyte. Cleavage of the HT signal by a parasite endoplasmic reticulum (ER) protease, plasmepsin V, is the proposed export mechanism. Here, we show that the HT signal facilitates export by recognition of the lipid phosphatidylinositol-3-phosphate (PI(3)P) in the ER, prior to and independent of protease action. Secretome HT signals, including those of major virulence determinants, bind PI(3)P with nanomolar affinity and amino acid specificities displayed by HT-mediated export. PI(3)P-enriched regions are detected within the parasite's ER and colocalize with endogenous HT signal on ER precursors, which also display high-affinity binding to PI(3)P. A related pathogenic oomycete's HT signal export is dependent on PI(3)P binding, without cleavage by plasmepsin V. Thus, PI(3)P in the ER functions in mechanisms of secretion and pathogenesis.
Assuntos
Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Eritrócitos/metabolismo , Humanos , Malária Falciparum/patologia , Dados de Sequência Molecular , Plasmodium falciparum/citologia , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas de Protozoários/químicaRESUMO
Maintaining protein lipoylation is vital for cell metabolism. The H-protein encoded by GCSH has a dual role in protein lipoylation required for bioenergetic enzymes including pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase, and in the one-carbon metabolism through its involvement in glycine cleavage enzyme system, intersecting two vital roles for cell survival. Here, we report six patients with biallelic pathogenic variants in GCSH and a broad clinical spectrum ranging from neonatal fatal glycine encephalopathy to an attenuated phenotype of developmental delay, behavioral problems, limited epilepsy and variable movement problems. The mutational spectrum includes one insertion c.293-2_293-1insT, one deletion c.122_(228 + 1_229-1) del, one duplication of exons 4 and 5, one nonsense variant p.Gln76*and four missense p.His57Arg, p.Pro115Leu and p.Thr148Pro and the previously described p.Met1?. Via functional studies in patient's fibroblasts, molecular modeling, expression analysis in GCSH knockdown COS7 cells and yeast, and in vitro protein studies, we demonstrate for the first time that most variants identified in our cohort produced a hypomorphic effect on both mitochondrial activities, protein lipoylation and glycine metabolism, causing combined deficiency, whereas some missense variants affect primarily one function only. The clinical features of the patients reflect the impact of the GCSH changes on any of the two functions analyzed. Our analysis illustrates the complex interplay of functional and clinical impact when pathogenic variants affect a multifunctional protein involved in two metabolic pathways and emphasizes the value of the functional assays to select the treatment and investigate new personalized options.
Assuntos
Hiperglicinemia não Cetótica , Humanos , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/patologia , Proteínas/genética , Mutação , Éxons/genética , Glicina/genética , Glicina/metabolismoRESUMO
Hundreds of mutations in a single gene result in rare diseases, but why mutations induce severe or attenuated states remains poorly understood. Defect in glycine decarboxylase (GLDC) causes Non-ketotic Hyperglycinemia (NKH), a neurological disease associated with elevation of plasma glycine. We unified a human multiparametric NKH mutation scale that separates severe from attenuated neurological disease with new in silico tools for murine and human genome level-analyses, gathered in vivo evidence from mice engineered with top-ranking attenuated and a highly pathogenic mutation, and integrated the data in a model of pre- and post-natal disease outcomes, relevant for over a hundred major and minor neurogenic mutations. Our findings suggest that highly severe neurogenic mutations predict fatal, prenatal disease that can be remedied by metabolic supplementation of dams, without amelioration of persistent plasma glycine. The work also provides a systems approach to identify functional consequences of mutations across hundreds of genetic diseases. Our studies provide a new framework for a large scale understanding of mutation functions and the prediction that severity of a neurogenic mutation is a direct measure of pre-natal disease in neurometabolic NKH mouse models. This framework can be extended to analyses of hundreds of monogenetic rare disorders where the underlying genes are known but understanding of the vast majority of mutations and why and how they cause disease, has yet to be realized.
Assuntos
Modelos Animais de Doenças , Glicina Desidrogenase (Descarboxilante)/química , Glicina Desidrogenase (Descarboxilante)/genética , Glicina/metabolismo , Hiperglicinemia não Cetótica/genética , Animais , Feminino , Genômica , Genótipo , Glicina/genética , Humanos , Hiperglicinemia não Cetótica/metabolismo , Hiperglicinemia não Cetótica/patologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Mutação de Sentido Incorreto , FenótipoRESUMO
Monogenetic diseases provide unique opportunity for studying complex, clinical states that underlie neurological severity. Loss of glycine decarboxylase (GLDC) can severely impact neurological development as seen in non-ketotic hyperglycinemia (NKH). NKH is a neuro-metabolic disorder lacking quantitative predictors of disease states. It is characterized by elevation of glycine, seizures and failure to thrive, but glycine reduction often fails to confer neurological benefit, suggesting need for alternate tools to distinguish severe from attenuated disease. A major challenge has been that there are 255 unique disease-causing missense mutations in GLDC, of which 206 remain entirely uncharacterized. Here we report a Multiparametric Mutation Score (MMS) developed by combining in silico predictions of stability, evolutionary conservation and protein interaction models and suitable to assess 251 of 255 mutations. In addition, we created a quantitative scale of clinical disease severity comprising of four major disease domains (seizure, cognitive failure, muscular and motor control and brain-malformation) to comprehensively score patient symptoms identified in 131 clinical reports published over the last 15 years. The resulting patient Clinical Outcomes Scores (COS) were used to optimize the MMS for biological and clinical relevance and yield a patient Weighted Multiparametric Mutation Score (WMMS) that separates severe from attenuated neurological disease (p = 1.2 e-5). Our study provides understanding for developing quantitative tools to predict clinical severity of neurological disease and a clinical scale that advances monitoring disease progression needed to evaluate new treatments for NKH.
Assuntos
Regulação Enzimológica da Expressão Gênica , Genótipo , Glicina Desidrogenase (Descarboxilante)/genética , Hiperglicinemia não Cetótica/genética , Mutação de Sentido Incorreto , Fenótipo , Humanos , Hiperglicinemia não Cetótica/diagnóstico , Hiperglicinemia não Cetótica/patologia , Índice de Gravidade de DoençaRESUMO
Artemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination.
Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Inibidores de Fosfoinositídeo-3 Quinase , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Resistência a Medicamentos/genética , Estudo de Associação Genômica Ampla , Modelos Moleculares , Mutação , Fosfatidilinositol 3-Quinase/química , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismoRESUMO
BACKGROUND: von Hippel-Lindau (VHL) disease is a familial neoplasia syndrome that results from the germline mutation of VHL. Pathogenic VHL mutations include deletion, frameshift, nonsense and missense mutations. Synonymous mutations are expected to be phenotypically silent and their role in VHL disease remains poorly understood. CASE PRESENTATION: We report a Caucasian male with a family history of pheochromocytoma and the synonymous VHL mutation c.414A > G (p.Pro138Pro). At 47-years, MRI revealed pheochromocytoma in the left adrenal gland and hemangioblastomas in the spine and brain. Pheochromocytoma was treated by adrenalectomy. Radiotherapy, followed by craniotomy and resection were needed to reduce hemangioblastomas to residual lesions. Two of three of the proband's children inherited the mutation and both presented with retinal hemangioblastomas without pheochromocytoma at age 7: one twin needed four laser treatments. Primary skin fibroblasts carrying the heterozygous mutation or wild type VHL were established from the family. Mutant fibroblasts downregulated full-length VHL mRNA and protein, and upregulated the short VHL mRNA isoform (a result of exon 2 skipping in splicing) at the mRNA level but not at the protein level. CONCLUSIONS: Our study shows that the synonymous VHL mutation c.414A > G can within 7 years induce pediatric retinal hemangioblastoma in absence of pheochromocytoma. This highlights the need to include splicing-altering synonymous mutations into the screening for VHL disease. This is also the first report on detecting and validating a synonymous VHL mutation using patient-derived fibroblasts. The mutation c.414A > G translates to p.Pro138Pro, yet it is not functionally silent, because it causes aberrant splicing by skipping exon 2. The reduced but not completely abolished pVHL protein in a loss-of-heterozygosity genetic backdrop may underlie the etiology of VHL disease.
Assuntos
Neoplasias Cerebelares/genética , Hemangioblastoma/genética , Splicing de RNA/genética , Mutação Silenciosa , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Neoplasias das Glândulas Suprarrenais/complicações , Neoplasias das Glândulas Suprarrenais/diagnóstico , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias Cerebelares/complicações , Neoplasias Cerebelares/diagnóstico , Criança , Pré-Escolar , Família , Feminino , Mutação da Fase de Leitura/genética , Mutação em Linhagem Germinativa , Hemangioblastoma/complicações , Hemangioblastoma/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Primárias Múltiplas/diagnóstico , Neoplasias Primárias Múltiplas/genética , Linhagem , Feocromocitoma/complicações , Feocromocitoma/diagnóstico , Feocromocitoma/genética , Prolina/genética , Neoplasias da Retina/complicações , Neoplasias da Retina/diagnóstico , Neoplasias da Retina/genética , Neoplasias da Coluna Vertebral/complicações , Neoplasias da Coluna Vertebral/diagnóstico , Neoplasias da Coluna Vertebral/genética , Doença de von Hippel-Lindau/complicações , Doença de von Hippel-Lindau/genéticaRESUMO
Artemisinin resistance threatens worldwide malaria control and elimination. Elevation of phosphatidylinositol-3-phosphate (PI3P) can induce resistance in blood stages of Plasmodium falciparum The parasite unfolded protein response (UPR) has also been implicated as a proteostatic mechanism that may diminish artemisinin-induced toxic proteopathy. How PI3P acts and its connection to the UPR remain unknown, although both are conferred by mutation in P falciparum Kelch13 (K13), the marker of artemisinin resistance. Here we used cryoimmunoelectron microscopy to show that K13 concentrates at PI3P tubules/vesicles of the parasite's endoplasmic reticulum (ER) in infected red cells. K13 colocalizes and copurifies with the major virulence adhesin PfEMP1. The PfEMP1-K13 proteome is comprehensively enriched in multiple proteostasis systems of protein export, quality control, and folding in the ER and cytoplasm and UPR. Synthetic elevation of PI3P that induces resistance in absence of K13 mutation also yields signatures of proteostasis and clinical resistance. These findings imply a key role for PI3P-vesicle amplification as a mechanism of resistance of infected red cells. As validation, the major resistance mutation K13C580Y quantitatively increased PI3P tubules/vesicles, exporting them throughout the parasite and the red cell. Chemical inhibitors and fluorescence microscopy showed that alterations in PfEMP1 export to the red cell and cytoadherence of infected cells to a host endothelial receptor are features of multiple K13 mutants. Together these data suggest that amplified PI3P vesicles disseminate widespread proteostatic capacity that may neutralize artemisinins toxic proteopathy and implicate a role for the host red cell in artemisinin resistance. The mechanistic insights generated will have an impact on malaria drug development.
Assuntos
Artemisininas/farmacologia , Resistência a Medicamentos , Retículo Endoplasmático , Eritrócitos/parasitologia , Lactonas/farmacologia , Plasmodium falciparum , Proteínas de Protozoários , Resposta a Proteínas não Dobradas , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Eritrócitos/metabolismo , Humanos , Mutação , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteostase/efeitos dos fármacos , Proteostase/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genéticaAssuntos
COVID-19/epidemiologia , Educação/organização & administração , Universidades/organização & administração , COVID-19/prevenção & controle , COVID-19/psicologia , COVID-19/transmissão , Transmissão de Doença Infecciosa/prevenção & controle , Educação/estatística & dados numéricos , Humanos , Indiana/epidemiologia , Distanciamento Físico , SARS-CoV-2/isolamento & purificação , Universidades/estatística & dados numéricosRESUMO
Patients with severe malaria treated with artesunate sometimes experience a delayed hemolytic episode. Artesunate (AS) induces pitting, a splenic process whereby dead parasites are expelled from their host erythrocytes. These once-infected erythrocytes then return to the circulation. We analyzed hematologic parameters in 123 travelers treated with AS for severe malaria. Among 60 nontransfused patients observed for more than 8 days, 13 (22%) had delayed hemolysis. The peak concentration of circulating once-infected erythrocytes was measured during the first week in 21 patients and was significantly higher in 9 patients with delayed hemolysis than in 12 with other patterns of anemia (0.30 vs 0.07; P = .0001). The threshold of 180 million once-infected erythrocytes per liter discriminated patients with delayed hemolysis with 89% sensitivity and 83% specificity. Once-infected erythrocyte morphology analyzed by using ImageStream in 4 patients showed an 8.9% reduction in their projected area, an alteration likely contributing to their shorter lifespan. Delayed clearance of infected erythrocytes spared by pitting during AS treatment is an original mechanism of hemolytic anemia. Our findings consolidate a disease framework for posttreatment anemia in malaria in which delayed hemolysis is a new entity. The early concentration of once-infected erythrocytes is a solid candidate marker to predict post-AS delayed hemolysis.
Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Hemólise/efeitos dos fármacos , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Adulto , Anemia Hemolítica/induzido quimicamente , Anemia Hemolítica/parasitologia , Artesunato , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Feminino , Seguimentos , Humanos , Malária Falciparum/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento , Adulto JovemRESUMO
Apicomplexan parasites, such as Toxoplasma gondii and Plasmodium, secrete proteins for attachment, invasion and modulation of their host cells. The host targeting (HT), also known as the Plasmodium export element (PEXEL), directs Plasmodium proteins into erythrocytes to remodel the host cell and establish infection. Bioinformatic analysis of Toxoplasma revealed a HT/PEXEL-like motif at the N-terminus of several hypothetical unknown and dense granule proteins. Hemagglutinin-tagged versions of these uncharacterized proteins show co-localization with dense granule proteins found on the parasitophorous vacuole membrane (PVM). In contrast to Plasmodium, these Toxoplasma HT/PEXEL containing proteins are not exported into the host cell. Site directed mutagenesis of the Toxoplasma HT/PEXEL motif, RxLxD/E, shows that the arginine and leucine residues are permissible for protein cleavage. Mutations within the HT/PEXEL motif that prevent protein cleavage still allow for targeting to the PV but the proteins have a reduced association with the PVM. Addition of a Myc tag before and after the cleavage site shows that processed HT/PEXEL protein has increased PVM association. These findings suggest that while Toxoplasma and Plasmodium share similar HT/PEXEL motifs, Toxoplasma HT/PEXEL containing proteins interact with but do not cross the PVM.
Assuntos
Antígenos de Protozoários , Proteínas de Protozoários/química , Toxoplasma/metabolismo , Algoritmos , Motivos de Aminoácidos , Animais , Biologia Computacional , Detergentes/farmacologia , Fibroblastos/parasitologia , Hemaglutininas/química , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Octoxinol , Plasmídeos/metabolismo , Polietilenoglicóis/farmacologia , Ligação Proteica , Isoformas de Proteínas/química , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Proto-Oncogênicas c-myc/química , Vacúolos/metabolismoRESUMO
Early diagnosis of neurological disorders would greatly improve their management and treatment. A major hurdle is that inflammatory products of cerebral disease are not easily detected in blood. Inflammation in multiple organs and heterogeneity in disease present additional challenges in distinguishing the extent to which a blood-based marker reflects disease in brain or other afflicted organs. Murine models of the monogenetic disorder Niemann-Pick Type C present aggressive forms of cerebral and liver inflammatory disease. Microarray analyses previously revealed age-dependent changes in innate immunity transcripts in the mouse brain. We have now validated four putative secretory inflammatory markers that are also elevated in mouse liver. We include limited, first time analysis of human Niemann-Pick Type C liver and cerebellum. Furthermore, we utilized 2-hydroxypropyl-ß-cyclodextrin (HPßCD, an emerging therapeutic) administered intraperitoneally in mice, which abrogates inflammatory pathology in the liver but has limited effect on the brain. By analyzing the corresponding effects on inflammatory plasma proteins, we identified cathepsin S as a lead indicator of liver disease. In contrast, lysozyme was a marker of both brain and liver disease. 2-Hydroxypropyl-ß-cyclodextrin had no effect on transcripts of neuron-specific 24-hydroxylase, and its product 24(S)-hydroxycholesterol was not a useful indicator in mouse plasma. Our data suggest that dual analysis of levels of the inflammatory markers lysozyme and cathepsin S may enable detection of multiple distinct states of neurodegeneration in plasma.
Assuntos
Catepsinas/análise , Catepsinas/sangue , Inflamação/sangue , Muramidase/sangue , Doença de Niemann-Pick Tipo C/sangue , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/patologia , Catepsinas/imunologia , Modelos Animais de Doenças , Feminino , Deleção de Genes , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Muramidase/imunologia , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/imunologia , Doença de Niemann-Pick Tipo C/patologia , Proteínas/genética , beta-Ciclodextrinas/uso terapêuticoRESUMO
Infection of erythrocytes by the human malaria parasite Plasmodium falciparum results in dramatic modifications to the host cell, including changes to its antigenic and transport properties and the de novo formation of membranous compartments within the erythrocyte cytosol. These parasite-induced structures are implicated in the transport of nutrients, metabolic products, and parasite proteins, as well as in parasite virulence. However, very few of the parasite effector proteins that underlie remodeling of the host erythrocyte are functionally characterized. Using bioinformatic examination and modeling, we have found that the exported P. falciparum protein PFA0210c belongs to the START domain family, members of which mediate transfer of phospholipids, ceramide, or fatty acids between membranes. In vitro phospholipid transfer assays using recombinant PFA0210 confirmed that it can transfer phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin between phospholipid vesicles. Furthermore, assays using HL60 cells containing radiolabeled phospholipids indicated that orthologs of PFA0210c can also transfer phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine. Biochemical and immunochemical analysis showed that PFA0210c associates with membranes in infected erythrocytes at mature stages of intracellular parasite growth. Localization studies in live parasites revealed that the protein is present in the parasitophorous vacuole during growth and is later recruited to organelles in the parasite. Together these data suggest that PFA0210c plays a role in the formation of the membranous structures and nutrient phospholipid transfer in the malaria-parasitized erythrocyte.
Assuntos
Membrana Celular/metabolismo , Eritrócitos/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Transporte Biológico Ativo , Membrana Celular/genética , Eritrócitos/parasitologia , Células HL-60 , Humanos , Lipídeos de Membrana/genética , Proteínas de Transferência de Fosfolipídeos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Vacúolos/metabolismo , Vacúolos/parasitologiaRESUMO
The malaria parasite exports proteins across its plasma membrane and a surrounding parasitophorous vacuole membrane, into its host erythrocyte. Most exported proteins contain a Host Targeting motif (HT motif) that targets them for export. In the parasite secretory pathway, the HT motif is cleaved by the protease plasmepsin V, but the role of the newly generated N-terminal sequence in protein export is unclear. Using a model protein that is cleaved by an exogenous viral protease, we show that the new N-terminal sequence, normally generated by plasmepsin V cleavage, is sufficient to target a protein for export, and that cleavage by plasmepsin V is not coupled directly to the transfer of a protein to the next component in the export pathway. Mutation of the fourth and fifth positions of the HT motif, as well as amino acids further downstream, block or affect the efficiency of protein export indicating that this region is necessary for efficient export. We also show that the fifth position of the HT motif is important for plasmepsin V cleavage. Our results indicate that plasmepsin V cleavage is required to generate a new N-terminal sequence that is necessary and sufficient to mediate protein export by the malaria parasite.
Assuntos
Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Ácido Aspártico Endopeptidases/metabolismo , Interações Hospedeiro-Parasita , Humanos , Malária Falciparum/enzimologia , Plasmodium falciparum/química , Plasmodium falciparum/genética , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas de Protozoários/genéticaRESUMO
In order to address the unmet needs and create opportunities that benefit patients with rare disease in India, a group of volunteers created a not-for-profit organization named Organization for Rare Diseases India (ORDI; www.ordindia.org). ORDI plans to represent the collective voice and advocate the needs of patients with rare diseases and other stakeholders in India. The ORDI team members come from diverse backgrounds such as genetics, molecular diagnostics, drug development, bioinformatics, communications, information technology, patient advocacy and public service. ORDI builds on the lessons learned from numerous similar organizations in the USA, European Union and disease-specific rare disease foundations in India. In this review, we provide a background on the landscape of rare diseases and the organizations that are active in this area globally and in India. We discuss the unique challenges in tackling rare diseases in India, and highlight the unmet needs of the key stakeholders of rare diseases. Finally, we define the vision, mission, goals and objectives of ORDI, identify the key developments in the health care context in India and welcome community feedback and comments on our approach.
Assuntos
Acessibilidade aos Serviços de Saúde/economia , Organizações sem Fins Lucrativos/organização & administração , Defesa do Paciente , Doenças Raras/epidemiologia , Doenças Raras/terapia , Humanos , Índia/epidemiologia , Objetivos OrganizacionaisRESUMO
BACKGROUND: Malaria in Cameroon is due to infections by Plasmodium falciparum and, to a lesser extent, Plasmodium malariae and Plasmodium ovale, but rarely Plasmodium vivax. A recent report suggested "Plasmodium vivax-like" infections around the study area that remained unconfirmed. Therefore, molecular and antigenic typing was used to investigate the prevalence of P. vivax and Duffy in asymptomatic adults resident in Bolifamba. METHODS: A cross-sectional study was conducted from July 2008 to October 2009. The status of all parasite species was determined by nested PCR in 269 blood samples collected. The P. falciparum and P. vivax anti-MSP/CSP antibody status of each subject was also determined qualitatively by a rapid card assay. Parasite DNA was extracted from a sample infected with three parasite species, purified and sequenced. The Duffy antigen status of 12 subjects infected with P. vivax was also determined by sequencing. In silico web-based tools were used to analyse sequence data for similarities and matches to reference sequences in public DNA databases. RESULTS: The overall malaria parasite prevalence in 269 individuals was 32.3% (87) as determined by PCR. Remarkably, 14.9% (13/87) of infections were caused either exclusively or concomitantly by P. vivax, established both by PCR and microscopic examination of blood smears, in individuals both positive (50%, 6/12) and negative (50%, 6/12) for the Duffy receptor. A triple infection by P. falciparum, P. vivax and P. malariae, was detected in one infected individual. Anti-MSP/CSP antibodies were detected in 72.1% (194/269) of samples, indicating high and continuous exposure to infection through mosquito bites. DISCUSSION: These data provide the first molecular evidence of P. vivax in Duffy positive and negative Cameroonians and suggest that there may be a significant prevalence of P. vivax infection than expected in the study area. Whether the P. vivax cases were imported or due to expansion of a founder effect was not investigated. Notwithstanding, the presence of P. vivax may complicate control efforts if these parasites become hypnozoitic or latent as the liver stage. CONCLUSIONS: These data strongly suggest that P. vivax is endemic to the south-west region of Cameroon and should be taken into account when designing malaria control strategies.
Assuntos
Doenças Assintomáticas/epidemiologia , Malária/epidemiologia , Malária/parasitologia , Tipagem Molecular , Plasmodium/classificação , Plasmodium/isolamento & purificação , Adolescente , Adulto , Anticorpos Antiprotozoários/sangue , Camarões/epidemiologia , Estudos Transversais , DNA de Protozoário/genética , Sistema do Grupo Sanguíneo Duffy/genética , Feminino , Humanos , Imunoensaio , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Prevalência , População Rural , Adulto JovemRESUMO
Eukaryotic parasites of the genus Plasmodium cause malaria by invading and developing within host erythrocytes. Here, we demonstrate that PfShelph2, a gene product of Plasmodium falciparum that belongs to the Shewanella-like phosphatase (Shelph) subfamily, selectively hydrolyzes phosphotyrosine, as shown for other previously studied Shelph family members. In the extracellular merozoite stage, PfShelph2 localizes to vesicles that appear to be distinct from those of rhoptry, dense granule, or microneme organelles. During invasion, PfShelph2 is released from these vesicles and exported to the host erythrocyte. In vitro, PfShelph2 shows tyrosine phosphatase activity against the host erythrocyte protein Band 3, which is the most abundant tyrosine-phosphorylated species of the erythrocyte. During P. falciparum invasion, Band 3 undergoes dynamic and rapid clearance from the invasion junction within 1 to 2 s of parasite attachment to the erythrocyte. Release of Pfshelph2 occurs after clearance of Band 3 from the parasite-host cell interface and when the parasite is nearly or completely enclosed in the nascent vacuole. We propose a model in which the phosphatase modifies Band 3 in time to restore its interaction with the cytoskeleton and thus reestablishes the erythrocyte cytoskeletal network at the end of the invasion process.
Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Interações Hospedeiro-Parasita , Plasmodium falciparum/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Protozoários/metabolismo , Vesículas Citoplasmáticas/metabolismo , Citoesqueleto/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Humanos , Hidrólise , Merozoítos/enzimologia , Merozoítos/fisiologia , Fosfotirosina/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/fisiologiaRESUMO
Bangladesh reduced malaria incidence by 93% from 2008 to 2020 through the action of governmental and non-governmental organizations. The Bangladesh context is unique to South Asia because its successful public sector malaria control programs have historically not engaged corporate partners (as undertaken in Sri Lanka and proposed in India). However, â¼18 million people continue to live at risk of infection in Bangladesh and for-profit private healthcare providers, catalytic for malaria elimination in many countries, are expected to benefit the national program. We distilled (from a large and complex literature) nine distinct strategies important in other developing settings and weighed them in the context of Bangladesh's flourishing private health care sector, driven by patient demand, self-interest and aspirations for public good, as well as heterogeneity in providers and malaria-prevalence. We propose a new model dependent on five strategies and its immediate deployment considerations in high endemic areas, to empower Bangladesh's phased agenda of eliminating indigenous malaria transmission by 2030.
RESUMO
Effective treatments for genetic disorders that coevolved with pathogens require simultaneous betterment of both conditions. Hydroxyurea (HU) offers safe and efficacious treatment for sickle cell anemia (SCA) by reducing clinical complications, transfusions, and death rates. Despite concerns that the HU treatment for SCA would increase infection risk by the human malaria Plasmodium falciparum, (the genetic driver of the sickle mutation), HU instead reduced clinical malaria. We used physiologically relevant drug exposures that mimic in vivo pharmacokinetics in humans. Under these conditions, we showed that HU and other ribonucleotide reductase (RNR) inhibitors have significant, intrinsic killing activity in vitro against schizont stages of P falciparum in both normal and sickle red blood cells. Long-term in vitro selection with HU increased the expression of Pfrnr genes but showed a low risk of eliciting stably resistant parasites or compromising the potency of current antimalarial drugs. Additive activity devoid of antagonism by HU was observed with a wide spectrum of commonly used antimalarial treatments. These data endorse broad, safe, and long-term use of HU for SCA in malaria-endemic countries and provide a novel biological model for the treatment of a genetic disorder with simultaneous, adjunct therapy of a life-threatening infection needed in a global health setting.