Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37096387

RESUMO

AIM: Candida auris, fast evolving drug-resistant fungus, poses an imminent global health threat. Alternative drug-resistance nonevoking treatment options are necessary. This study explored the antifungal and antibiofilm efficacies of Withania somnifera seed oil extracted using super critical CO2 (WSSO) against clinically isolated Fluconazole-resistant C. auris and its putative mode-of-action. METHODS AND RESULTS: Effects of WSSO on C. auris were tested by broth microdilution method, with observed IC50 at 5.96 mg ml-1. Time-kill assay revealed that WSSO is fungistatic. Mechanistically, ergosterol binding and sorbitol protection assays showed that C. auris cell membrane and cell wall are the targets for WSSO. Lactophenol: Cotton-Blue: Trypan-Blue staining confirmed loss of intracellular contents by WSSO treatment. Candida auris biofilm formation was disrupted by WSSO (BIC50: 8.52 mg ml-1). Additionally, WSSO exhibited dose and time-dependent mature biofilm eradication property with 50% efficacies at 23.27, 19.28, 18.18, and 7.22 mg ml-1 over 24, 48, 72, and 96 h, respectively. Biofilm eradication by WSSO was further substantiated through scanning electron microscopy. Standard-of-Care Amphotericin B, at its break-point concentration, (2 µg ml-1) was found to be inefficient as an antibiofilm agent. CONCLUSIONS: WSSO is a potent antifungal agent effective against planktonic C. auris and its biofilm.


Assuntos
Candida , Withania , Candida auris , Antifúngicos/farmacologia , Biofilmes , Óleos de Plantas/farmacologia , Testes de Sensibilidade Microbiana
2.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36708174

RESUMO

The rare, fastest-germinating, frequently invasive mucorale, Cunninghamella bertholletiae, is intractable due to its imprecise etiology. Cunninghamella bertholletiae spores can infect both immunocompromised and immunocompetent individuals to cause mucormycosis. Sub-optimal drug-susceptibility further limits its treatment options. The classical nasal drop, Anu Taila, is reported to be effective against the rather prevalent mucorales, Mucor spp., making its anti-mucormycotic effect against C. bertholletiae worth testing. The inhibitory effect of Anu Taila against C. bertholletiae was manifested as microstructural alterations of the spores and their delayed germination. Anu Taila reduced the germination-promoting reactive oxygen species (ROS) levels in both the pathogen, C. bertholletiae, and the human host lung epithelial A549 cells. Expressions of structural (chitin synthase, trehalose synthase) and functional (cAMP-PKA) markers of spore germination were regulated by Anu Taila. cAMP-PKA expression and ROS generation are well-correlated, implicating the role of Anu Taila in delaying C. bertholletiae spore germination by targeting cAMP-PKA-mediated ROS generation. In conclusion, this study demonstrates that Anu Taila can create an opportunity for the host immune system to tackle the onset of C. bertholletiae infection by delaying its pathogenesis. This can be further leveraged to reinforce the host immune system through combinatorial treatment to prevent the establishment of the mucormycosis infection.


Assuntos
Mucorales , Mucormicose , Humanos , Mucormicose/patologia , Espécies Reativas de Oxigênio
3.
J Appl Microbiol ; 132(4): 3355-3374, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35025137

RESUMO

AIM: The intractable, mucormycosis, caused by Mucorales primarily targets immunocompromised individuals. The first-line therapy, intravenous liposomal amphotericin B and surgical debridement of necrotic tissue, is contraindicative in individuals with compromised kidneys. This invokes a pressing need to identify safer treatment options. METHODS AND RESULTS: The antifungal effect of the classical nasal drop, Anu taila, against Mucor spp. was investigated through microbiological, cytological, analytical chemical (HPLC and GS-MS/MS) and scanning electron microscopic (SEM) approaches. Anu taila-pretreated spores germinated late, resulting in reduced infectivity, observed as milder monocytic immune response. Conversely, Anu taila-pretreated human THP-1 cells exhibited an improved immune response against Mucor spores, through TNF-α. Repeated Anu taila application rapidly abolished fungal microarchitectures than amphotericin B, evident from swift replacement of hyphae, sporangiophores and sporangia with fused biomass, in the SEM images. HPLC analysis showed that Anu taila treatment significantly reduced overall ergosterol content in Mucor biomass. Anu taila also downregulated sterol-C5-desaturase-coding ERG3 gene, crucial for ergosterol biosynthesis and resultant structural integrity, in Mucor spp. CONCLUSION: Taken together, Anu taila was found effective against Mucor spp., with both prophylactic and curative implications, which is attributable to the phytochemical composition of this classical nasal drop. SIGNIFICANCE AND IMPACT STATEMENT: The potential remedial effects of a classical nasal drop against an obdurate and challenging fungal infection are identified.


Assuntos
Mucormicose , Fator de Necrose Tumoral alfa , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Ergosterol , Humanos , Imunidade , Mucormicose/tratamento farmacológico , Mucormicose/microbiologia , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/genética
4.
Plasmid ; 115: 102557, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33539828

RESUMO

The fission yeast, Schizosaccharomyces pombe, is an excellent model for basic research but is not useful for commercial scale protein expression due to lack of strong expression vectors. Earlier, we showed that the lsd90 promoter elicited significantly greater GFP expression level than the adh1 and nmt1 promoters, albeit in different vector backbones. Here, we have systematically investigated the contribution of selectable markers, LEU2 and URA3m to GFP expression: while LEU2 elicited very low expression, the URA3m gene, with truncated promoter, elicited much greater GFP expression level with all promoters. Paradoxically, an inverse correlation was observed between the GFP transcription and translation efficiency. This system can be useful for understanding the factors governing recombinant gene expression and optimization of protein production.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Genes Reporter , Vetores Genéticos/genética , Plasmídeos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transcrição Gênica
5.
J Biol Chem ; 290(9): 5512-22, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25572394

RESUMO

Brain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrP(C)) from its normal conformation to an aggregated, PrP-scrapie (PrP(Sc)) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrP(C) in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrP(C) is lacking. Kidney provides a relevant model for this evaluation because PrP(C) is expressed in the kidney, and ∼370 µg of iron are reabsorbed daily from the glomerular filtrate by kidney proximal tubule cells (PT), requiring ferrireductase activity. Here, we report that PrP(C) promotes the uptake of transferrin (Tf) and non-Tf-bound iron (NTBI) by the kidney in vivo and mainly NTBI by PT cells in vitro. Thus, uptake of (59)Fe administered by gastric gavage, intravenously, or intraperitoneally was significantly lower in PrP-knock-out (PrP(-/-)) mouse kidney relative to PrP(+/+) controls. Selective in vivo radiolabeling of plasma NTBI with (59)Fe revealed similar results. Expression of exogenous PrP(C) in immortalized PT cells showed localization on the plasma membrane and intracellular vesicles and increased transepithelial transport of (59)Fe-NTBI and to a smaller extent (59)Fe-Tf from the apical to the basolateral domain. Notably, the ferrireductase-deficient mutant of PrP (PrP(Δ51-89)) lacked this activity. Furthermore, excess NTBI and hemin caused aggregation of PrP(C) to a detergent-insoluble form, limiting iron uptake. Together, these observations suggest that PrP(C) promotes retrieval of iron from the glomerular filtrate via its ferrireductase activity and modulates kidney iron metabolism.


Assuntos
FMN Redutase/metabolismo , Ferro/metabolismo , Rim/metabolismo , Proteínas PrPC/metabolismo , Animais , Western Blotting , Linhagem Celular Transformada , Membrana Celular/metabolismo , FMN Redutase/genética , Feminino , Transporte de Íons/genética , Ferro/farmacocinética , Radioisótopos de Ferro , Rim/citologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Proteínas PrPC/genética , Transferrina/metabolismo , Transferrina/farmacocinética
6.
Front Pharmacol ; 14: 1095083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274116

RESUMO

Introduction: Tinospora cordifolia (Wild.) Hook.f. & Thomson (Giloy), has been widely used in the Ayurvedic system of medicine. However, some sporadic under-powered case studies have recently reported Tinospora cordifolia associated toxicity. Thus, following OECD 407 guidelines, a 28-day-repeated-dose-14-day-recovery toxicological evaluation of the aqueous extract of T. cordifolia stem (TCWE) was conducted under good laboratory practice (GLP), in Sprague-Dawley (SD) rats. Methods: 100, 300, and 1000 mg/kg/day of TCWE was given orally to designated treatment groups of either sex. Two separate 14-day recovery satellite groups received either vehicle control or 1000 mg/kg/day of TCWE. Results: In this study, TCWE was found safe up to a dose of 1000 mg/kg/day with no mortality or related toxicological manifestation in terms of clinical signs, ocular effects, hematology, urinalysis, clinical chemistry parameters, or macro- or microscopic changes in any organs. The satellite group did not show any adverse effect after 14-day recovery period. Thus, the No-Observed-Adverse-Effect-Level (NOAEL) of TCWE was determined to be 1000 mg/kg/day. Discussion: In conclusion, this study established the non-clinical safety of the aqueous extract of T. cordifolia stem, which confirms the age-old safe medicinal use of this herb, and also paves the path for future clinical research on formulations containing Tinospora cordifolia.

7.
3 Biotech ; 13(6): 193, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37205177

RESUMO

Converging evidences identifies that microRNA-21 (miR-21) is responsible for drug resistance in breast cancer. This study aims to evaluate the miR-21-modulatory potential of a hybrid compound, pterostilbene-isothiocyanate (PTER-ITC), in tamoxifen-resistant MCF-7 (TR/MCF-7) and 5-fluorouracil-resistant MDA-MB 231 (5-FUR/MDA-MB 231) breast cancer cell lines, established by repeated exposure to gradually increasing the concentrations of tamoxifen and 5-fluorouracil, respectively. The outcome of this study shows that PTER-ITC effectively reduced the TR/MCF-7 (IC50: 37.21 µM) and 5-FUR/MDA-MB 231 (IC50: 47.00 µM) cell survival by inducing apoptosis, inhibiting cell migration, colony and spheroid formations in TR/MCF-7 cells, and invasiveness of 5-FUR/MDA-MB 231 cells. Most importantly, PTER-ITC significantly reduced the miR-21 expressions in these resistant cell lines. Moreover, the downstream tumor suppressor target gene of miR-21 such as PTEN, PDCD4, TIMP3, TPM1, and Fas L were upregulated after PTER-ITC treatment, as observed from transcriptional (RT-qPCR) and translational (immunoblotting) data. In silico and miR-immunoprecipitation (miR-IP) results showed reduced Dicer binding to pre-miR-21, after PTER-ITC treatment, indicating inhibition of miR-21 biogenesis. Collectively, the significance of this study is indicated by preliminary evidence for miR-21-modulatory effects of PTER-ITC that highlights the potential of this hybrid compound as an miR-21-targeting therapeutic agent.

8.
ACS Omega ; 8(46): 43474-43489, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027335

RESUMO

Osteosarcoma, a highly metastasizing bone neoplasm, is a leading cause of death and disability in children and adolescents worldwide. Osteosarcoma is only suboptimally responsive to surgery and radio- and chemotherapy, that too with adverse side effects. Hence, there is a necessary need for safer alternative therapeutic approaches. This study evaluated the anticancer effects of the semi-synthetic compound, pterostilbene-isothiocyanate (PTER-ITC), on human osteosarcoma MG-63 cells through cytotoxicity, wound-healing, and transwell-migration assays. Results showed that PTER-ITC specifically inhibited the survival, proliferation, and migration of osteosarcoma cells. PTER-ITC induced apoptosis in MG-63 cells by disrupting mitochondrial membrane potential, as evident from the outcomes of different cytological staining. The antimetastatic potential of PTER-ITC was evaluated through immunostaining, RT-qPCR, and immunoblotting. In silico (molecular docking and dynamic simulation) and, subsequently, biochemical [co-immunoprecipitation (Co-IP) and luciferase reporter] assays deciphered the underlying mode-of-action of this compound. PTER-ITC increased E-cadherin and reduced N-cadherin levels, thereby facilitating the reversal of epithelial-mesenchymal transition (EMT). It also modulated the expressions of proliferative cell nuclear antigen (PCNA), caspase-3, poly [ADP-ribose] polymerase (PARP-1) and matrix metalloproteinase-2/9 (MMPs-2/9) at transcriptional and translational levels. PTER-ITC interfered with the ß-catenin/transcription factor-4 (TCF-4) interaction in silico by occupying the ß-catenin binding site on TCF-4, confirmed by their reduced physical interactions (Co-IP assay). This inhibited transcriptional activation of TCF-4 by ß-catenin (as shown by luciferase reporter assay). In conclusion, PTER-ITC exhibited potent anticancer effects in vitro against human osteosarcoma cells by abrogating the ß-catenin/TCF-4 interaction. Altogether, this study suggests that PTER-ITC may be regarded as a new approach for osteosarcoma treatment.

9.
FEMS Microbiol Ecol ; 99(10)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37656879

RESUMO

The microbiome of the human gut is a complex assemblage of microorganisms that are in a symbiotic relationship with one another and profoundly influence every aspect of human health. According to converging evidence, the human gut is a nodal point for the physiological performance matrixes of the vital organs on several axes (i.e. gut-brain, gut-lung, etc). As a result of COVID-19, the importance of gut-lung dysbiosis (balance or imbalance) has been realised. In view of this, it is of utmost importance to develop a comprehensive understanding of the microbiome, as well as its dysbiosis. In this review, we provide an overview of the gut-lung axial microbiome and its importance in maintaining optimal health. Human populations have successfully adapted to geophysical conditions through traditional dietary practices from around the world. In this context, a section has been devoted to the traditional Indian system of medicine and its theories and practices regarding the maintenance of optimally customized gut health.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Microbiota , Humanos , Disbiose
10.
J Biol Chem ; 286(11): 9308-20, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21224386

RESUMO

Swi6/HP1, an evolutionarily conserved protein, is critical for heterochromatin assembly in fission yeast and higher eukaryotes. In fission yeast, histone deacetylation by histone deacetylases is thought to be followed by H3-Lys-9 methylation by the histone methyltransferase Clr4/Suv39H1. H3-Lys-9-Me2 interacts with the chromodomain of Swi6/HP1. Swi6/HP1 is thought to act downstream of Clr4/Suv39, and further self-association of Swi6/HP1 is assumed to stabilize the heterochromatin structure. Here, we show that the self-association-defective mutant of Swi6 does not interact with Clr4. It not only fails to localize to heterochromatin loci but also interferes with heterochromatic localization of H3-Lys-9-Me2 (and thereby Clr4) and the endogenous Swi6 in a dominant negative manner. Thus, self-association of Swi6/HP1 helps in binding to and recruitment of Clr4 and thereby in establishment and maintenance of heterochromatin by a concerted rather than a sequential mechanism.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Metiltransferases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Acetilação , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Heterocromatina/genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Metilação , Metiltransferases/genética , Mutação , Ligação Proteica , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
11.
AMB Express ; 12(1): 30, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244805

RESUMO

Inanimate objects/surfaces become fomites upon contacting infectious agents such as disease-causing bacteria, fungi and viruses. Smartphones are one of the most prominent among these fomites. COVID-19 pandemic has raised the awareness on mobile sanitization, as an active measure to curb fomite-mediated viral transmission. Available mobile sanitizers and ultraviolet (UV) ray mediated mobile sanitization have their own sets of pros and cons, often being less user-friendly. This study explored the germicidal efficacy of an herbal-based sanitizer, Germi-X spray, on hands and mobiles, through microbiological techniques of micro-broth dilution and Kirby-Bauer disc diffusion assay, thumb print assay and swab test. Notably, Germi-X spray was found to be 6-67% more effective against surface pathogens, like, Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas fluorescens and Pseudomonas aeruginosa, as compared to a very popular product in the Indian market, which was taken as a control for this study. The observed anti-bacterial activity of the spray from disc-diffusion assay suggests its greater surface retentivity as compared to the control. Germicidal potency of Germi-X spray, when used to sanitize hands, was found to be greater than 80%. There was ~ 17-fold reduction in microbial counts after sanitizing smartphones with Germi-X spray. The novelty of this study lies in providing experimental evidence for this herbal-based surface sanitizer in efficiently disinfecting one of the super contaminated fomite, the smartphones. In conclusion, having an herbal base with a high germicidal efficacy against surface pathogens, together with longer surface retention, Germi-X spray appears to be an eco-friendly and cost-effective sanitizer for the surfaces of electronic gadgets like smartphones.

12.
J Evid Based Integr Med ; 27: 2515690X211068832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985370

RESUMO

The rapidly increasing global burden of healthcare associated infections (HAI) is resulting in proportionate increase in chemical disinfection in healthcare settings, adding an extra burden of environmental toxicity. Therefore, alternative disinfection techniques with less or no adverse side-effects need to be explored. In this regard, ayurvedic 'dhoopan' technique involving slow combustion of medicinal herbs, minerals and animal products hold great promise. In this study, dhoopan of a traditionally defined ayurvedic medicinal mix, 'Vishaghn Dhoop' (VD) has been assessed for its anti-microbial potentials against both Gram-positive and negative pathogenic bacteria, Mycobacterium and pathogenic fungus, Candida albicans. Fume generated from slow combustion of VD was subjected to physico-chemical characterization and was assessed for anti-microbial effects. VD fume contained particles of 354 ± 84 nm size, laden with anti-microbial metabolites. On agar plates, VD fumigation reduced bacterial growth by 13 - 38%. Liquid culture aeration with VD fume inhibited bacterial growth by 50 - 85%, and fungal growth by 80%. In real life settings (in vivo), un-sanitized rooms fumigated with VD fumes for 30 min reduced the environmental microbial loads by 10 folds. In addition, the safety of VD fumigation was evaluated through in vitro cytotoxicity assay on human lung epithelial (A549) cells. Cells exposed to media-collected VD fumes for 24 h exhibited normal cyto-safety profile. Collectively, these observations provide scientific evidence in support of a traditional technique of disinfection, which can be fine-tuned to have implications in clinical, healthcare and food industry where, disinfection is a prime requirement.


Assuntos
Infecção Hospitalar , Nanopartículas , Animais , Candida albicans , Desinfecção/métodos , Gases , Humanos
13.
Int J Biol Sci ; 18(2): 675-692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35002517

RESUMO

Follicle stimulating hormone (FSH) and its receptor (FSHR) have been reported to be responsible for several physiological functions and cancers. The responsiveness of stem cells and cancer stem cells towards the FSH-FSHR system make the function of FSH and its receptors more interesting in the context of cancer biology. This review is comprised of comprehensive information on FSH-FSHR signaling in normal physiology, gonadal stem cells, cancer cells, and potential options of utilizing FSH-FSHR system as an anti-cancer therapeutic target.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores do FSH/metabolismo , Reprodução/fisiologia , Animais , Hormônio Foliculoestimulante/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Receptores do FSH/antagonistas & inibidores , Transdução de Sinais
14.
Front Pharmacol ; 13: 883475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600853

RESUMO

The inflammatory cartilaginous degeneration of the articular joints, mostly those of knee, hips and hands, is osteoarthritis (OA). The available treatment strategies for osteoarthritis are designed for pain relief, molecular targeting, cartilage regeneration and surgical intervention. However, meta-analysis of clinical trials has shown these strategies to be sub-optimal, thereby, eliciting a need for investigating alternative options. The herbo-mineral formulation, Peedanil Gold (PN-G) has been used against joint pains and inflammation. In the current study, anti-osteoarthritic effects of PN-G were investigated in rat model of OA, induced by intra-articular injection of monosodium-iodoacetate. PN-G treatment improved the clinical and Kellgren & Lawrence scores; and rescued the osteoarthritic rats from hyperalgesia and allodynia. Besides, PN-G treatment ameliorated joint inflammation and abrogated in vivo osteoarthritic pathology through effective cartilage regeneration, measured radiologically and histopathologically. PN-G also reduced the levels of interleukin-6 (IL-6) and interleukin-1 beta (IL-1ß), in a dose dependent manner, in inflamed human macrophagic THP-1 cells, thereby, reaffirming its anti-inflammatory property at cytosafe concentrations. Ultra High performance liquid chromatography (UHPLC) revealed the presence of several analgesic and anti-inflammatory phytocompounds, like ellagic acid, guggulsterone E, guggulsterone Z, 5-(hydroxymethyl) furfural, corilagin, cinnamic acid, ferulic acid, gallic acid and protocatechuic acid in PN-G. In conclusion, this study has succinctly demonstrated that PN-G is capable of relieving the clinical symptoms of osteoarthritis, which is measurable through the established osteoarthritic serum biomarker, Cartilage Oligomeric Matrix Protein (COMP).

15.
Biomater Adv ; 139: 212980, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882136

RESUMO

Full-thickness wounds are difficult to heal spontaneously. Scaffolds, meant for treating full-thickness wounds, should ensure proper tissue regeneration, both structurally and functionally. An ideal scaffold should mimic the physical, mechanical and biochemical properties of natural skin. However, available mono- or bi-layer skin scaffolds lack in the precise architecture and functionality, thus, failing to provide scar-free regeneration of full-thickness skin wounds. These unmet challenges of scar-free skin regeneration have been addressed in the present study for the first time. This research deals with the synthesis of a low-cost, structurally and functionally graded single unit biodegradable polymeric scaffold. The functional gradient in this scaffold was achieved by varying polymer concentration and electrospinning parameters. This gradient in the scaffold provided the required microenvironment for proper functional and structural reconstruction of all the layers of natural skin. The mechanical property of the scaffold matched that of the natural skin. Besides, the degradation kinetics of the scaffold was in coordination with the regeneration time for the full-thickness wound. The porosity and hydrophilicity gradients of the scaffold helped it mimic the in vivo hypodermal, dermal and epidermal microenvironments of the skin, simultaneously. Co-culturing PCS-201 (dermal fibroblasts) and HaCaT (keratinocytes) on the scaffold resulted in successful regeneration through cellular proliferation, differentiation and organization of the skin tissue. The scaffold also displayed better wound healing in vivo, in terms of speedy wound closure and proper tissue regeneration, in comparison to the standard treatment. Altogether, this study successfully established a simple, one-step synthesis process of a functionally graded, bioresorbable scaffold for scar-free, native-like, structural and functional regeneration of full-thickness skin wounds. Due to cost-effectiveness, easy synthesis process and microarchitectural features, the designed scaffold possesses a potential of translation to a good commercial wound healing product.


Assuntos
Pele Artificial , Alicerces Teciduais , Implantes Absorvíveis , Cicatriz , Humanos , Alicerces Teciduais/química , Cicatrização
16.
PLoS Negl Trop Dis ; 16(6): e0010484, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35714107

RESUMO

Chronic topical cases of Sporotrichosis, a chronic fungal infection caused by the ubiquitously present cryptic members of the Sporothrix species complex, are treated with oral administrations of itraconazole. However, severe pulmonary or disseminated cases require repeated intra-venous doses of amphotericin B or even surgical debridement of the infected tissue. The unavoidable adverse side-effects of the current treatments, besides the growing drug resistance among Sporothrix genus, demands exploration of alternative therapeutic options. Medicinal herbs, due to their multi-targeting capacity, are gaining popularity amidst the rising antimicrobial recalcitrance. Withania somnifera is a well-known medicinal herb with reported antifungal activities against several pathogenic fungal genera. In this study, the antifungal effect of the whole plant extract of W. somnifera (WSWE) has been explored for the first time, against an itraconazole resistant strain of S. globosa. WSWE treatment inhibited S. globosa yeast form growth in a dose-dependent manner, with IC50 of 1.40 mg/ml. Minimum fungicidal concentration (MFC) was found to be 50 mg/ml. Sorbitol protection and ergosterol binding assays, revealed that anti-sporotrichotic effects of WSWE correlated well with the destabilization of the fungal cell wall and cell membrane. This observation was validated through dose-dependent decrease in overall ergosterol contents in WSWE-treated S. globosa cells. Compositional analysis of WSWE through high performance liquid chromatography (HPLC) exhibited the presence of several anti-microbial phytochemicals like withanone, withaferin A, withanolides A and B, and withanoside IV and V. Withanone and withaferin A, purified from WSWE, were 10-20 folds more potent against S. globosa than WSWE, thus, suggesting to be the major phytocompounds responsible for the observed anti-sporotrichotic activity. In conclusion, this study has demonstrated the anti-sporotrichotic property of the whole plant extract of W. somnifera against S. globosa that could be further explored for the development of a natural antifungal agent against chronic Sporotrichosis.


Assuntos
Plantas Medicinais , Sporothrix , Esporotricose , Withania , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Saccharomyces cerevisiae , Esporotricose/microbiologia , Withania/química
17.
Front Pharmacol ; 13: 1024830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386162

RESUMO

The herbo-mineral formulation, Divya-Swasari-Vati (DSV), is a well-known Ayurvedic medication for respiratory ailments. In a recent pre-clinical study, DSV rescued humanized zebrafish from SARS-CoV-2 S-protein-induced pathologies. This merited for an independent evaluation of DSV as a SARS-CoV-2 entry inhibitor in the human host cell and its effectiveness in ameliorating associated cytokine production. The ELISA-based protein-protein interaction study showed that DSV inhibited the interactions of recombinant human ACE 2 with three different variants of S proteins, namely, Smut 1 (the first reported variant), Smut 2 (W436R variant) and Smut 3 (D614G variant). Entry of recombinant vesicular stomatitis SARS-CoV-2 (VSVppSARS-2S) pseudovirus, having firefly luciferase and EGFP reporters, was assessed through luciferase assay and fluorescent microscopy. DSV exhibited dose-dependent inhibition of VSVppSARS-2S pseudovirus entry into human lung epithelial A549 cells and also suppressed elevated levels of secreted pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) induced by viral infection mimicking Poly I:C-, S-protein- and VSVppSARS-2S pseudovirus. In human immune cells, DSV also moderated TNF-α-mediated NF-κB induction, in a dose-dependent manner. The observed anti-viral effect of DSV against SARS-CoV-2 is attributable to the presence of different metabolites Summarily, the observations from this study biochemically demonstrated that DSV interfered with the interaction between SARS-CoV-2 S-protein and human ACE 2 receptor which consequently, inhibited viral entry into the host cells and concomitant induction of inflammatory response.

18.
Biochem Pharmacol ; 206: 115284, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36209841

RESUMO

Prolonged glucocorticoid treatment often leads to glucocorticoid-induced osteoporosis (GIOP), a common iatrogenic complication. This study has explored the anti-osteoporotic potential of semi-synthetic compound, pterostilbene isothiocyanate (PTER-ITC) in GIOP rat model and bone formation potential in vitro. Dysregulated bone-remodelling leads to osteoporosis. PTER-ITC has shown anti-osteoclastogenic activity in vitro. However, its molecular target remains unidentified, which has been explored in this study through in silico and experimental approaches. Alizarin Red S and von-Kossa staining, and alkaline phosphatase (ALP) activity showed the osteogenic differentiation potential of PTER-ITC in pre-osteoblastic mouse MC3T3-E1 and human hFOB 1.19 cells, further, confirmed through the expressions of osteogenic markers at transcriptional (RT-qPCR) and translational (immunoblotting) levels. The anti-osteoclastogenic property of PTER-ITC was confirmed through inhibition of actin ring formation in mouse RAW 264.7 and human THP-1 macrophagic cells. Molecular docking and molecular dynamic simulation showed that PTER-ITC inhibited the crucial osteoclastogenic RANK/TRAF6 interaction, which was further confirmed biochemically through co-immunoprecipitation assay. Osteoporotic bone architecture [validated through scanning electron microscopy (SEM), X-ray radiography, and micro-computed tomography (µ-CT)], physiology (confirmed through compression testing, Young's modulus and stress versus strain output) and histology (verified through hematoxylin-eosin, Alizarin Red S, von-Kossa and Masson-trichrome staining) of PTER-ITC-treated GIOP female Wistar rats were assuaged. Osteoporotic amelioration through PTER-ITC treatment was further substantiated through serum biomarkers, like, parathyroid hormone (PTH), ALP, calcium (Ca2+), Procollagen type I N-terminal propeptide (P1NP), and 25-hydroxy vitamin D. In conclusion, this study identifies the molecular target of PTER-ITC in impeding osteoclastogenesis and facilitating osteogenesis to ameliorate osteoporosis.


Assuntos
Isotiocianatos , Osteogênese , Osteoporose , Estilbenos , Animais , Feminino , Humanos , Camundongos , Ratos , Diferenciação Celular , Glucocorticoides/efeitos adversos , Isotiocianatos/farmacologia , Simulação de Acoplamento Molecular , Osteoblastos/metabolismo , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Ratos Wistar , Fator 6 Associado a Receptor de TNF/metabolismo , Microtomografia por Raio-X , Estilbenos/farmacologia , Receptor Ativador de Fator Nuclear kappa-B
19.
J Herb Med ; 29: 100472, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34055580

RESUMO

INTRODUCTION: Treatment for COVID-19 was ambiguous in the beginning of the pandemic. At that time, the conventional medical system was grappling to cope with the rapidly spreading pandemic. The potential of Ayurveda, one of the branches of traditional Indian medicine (TIM), with a 5000 year old history, employing medicines derived from plants and other natural sources, against COVID-19 has been explored through a comparative retrospective open-label study. METHODS: Reported here are the remedial effects of Ayurvedic medicines alone or in combination with Allopathic treatment on 59 asymptomatic or mildly symptomatic COVID-19 patients, across multiple COVID-19 care centers in Ahmedabad, India. The patients were confirmed for COVID-19 infection through RT-qPCR of nasopharyngeal swabs. With informed consents from the patients, the sourced data was divided into 'Allopathic and Ayurvedic' [AlloAyur] (n = 41) and 'Ayurvedic only'[Ayur] (n = 18) groups, based on the type of treatment the patients decided to receive, that is Ayurvedic medicines with Allopathic treatment or Ayurvedic medicines alone, respectively. Ayurvedic medicines included oral doses and nasal drops; the dosage and regime were decided based on the recommendations from Ayurvedic texts. The Allopathic medicines included Azithromycin, Vitamin-C and anti-histamines. Acetaminophen was also administered when necessary, by the attending physician. The patients were observed for symptomatic improvement. RESULTS: Primary outcome of this study was the symptomatic relief from COVID-19. Data collected over a period of two months, showed that more patients exhibited symptomatic relief in Ayur goup (83.33 %) than in the AlloAyur group (48.78 %) within the first 13 days of treatment. No visible adverse effects were observed. This indicated faster and safe symptomatic resolution among those treated with Ayurvedic medicines alone. CONCLUSION: Patients receiving only Ayurvedic medicines on average were symptomatically relieved faster than those receiving Allopathic and Ayurvedic medicines together.

20.
J Inflamm Res ; 14: 869-884, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33758527

RESUMO

PURPOSE: Coronil is a tri-herbal formulation containing extracts from Withania somnifera, Tinospora cordifolia, and Ocimum sanctum. Recently, it was shown that Coronil rescued humanized zebrafish from SARS-CoV-2 induced pathologies. Based on reported computational studies on the phytochemicals present in Coronil, it could be a potential inhibitor of SARS-CoV-2 entry into the host cell and associated cytokines' production. METHODS: Through an ELISA-based biochemical assay, effects of Coronil on interaction between ACE-2 and different mutants of viral spike (S) protein, crucial for viral invasion of host cell, were evaluated. Additionally, using recombinant pseudoviruses having SARS-CoV-2 spike (S) protein in their envelopes and firefly luciferase reporter in their genomes, effects of Coronil on virus entry into human alveolar epithelial cells were evaluated through luciferase assay. UHPLC profiled Coronil also modulated S-protein mediated production of pro-inflammatory cytokines in A549 cells, like interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α), as evaluated through RT-qPCR and ELISA. RESULTS: Coronil effectively inhibited the interaction of ACE-2 not only with the wild-type S protein (SWT) but also with its currently prevalent and more infectious variant (SD614G) and another mutant (SW436R) with significantly higher affinity toward ACE-2. Treatment with Coronil significantly reduced the increased levels of IL-6, IL-1ß, and TNF-α in A549 cells incubated with different S-protein variants in a dose-dependent manner. Likewise, it also prevented the SARS-CoV-2 S-protein pseudotyped vesicular stomatitis virus (VSVppSARS-2S) mediated cytokine response in these cells by reducing entry of pseudoviruses into host cells. CONCLUSION: Coronil prevented SARS-CoV-2 S-protein mediated viral entry into A549 cells by inhibiting spike protein-ACE-2 interactions. SARS-CoV-2 S protein induced inflammatory cytokine response in these cells was also moderated by Coronil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA